Skip to main content
Log in

High-precision low-power quartz tuning fork temperature sensor with optimized resonance excitation

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper presents the design, fabrication, and characterization of a quartz tuning fork temperature sensor based on a new ZY-cut quartz crystal bulk acoustic wave resonator vibrating in a flexural mode. Design and performance analysis of the quartz tuning fork temperature sensor were conducted and the thermal sensing characteristics were examined by measuring the resonance frequency shift of this sensor caused by an external temperature. Finite element method is used to analyze the vibratory modes and optimize the structure of the sensor. The sensor prototype was successfully fabricated and calibrated in operation from 0 to 100 °C with the thermo-sensitivity of 70×10−6/°C. Experimental results show that the sensor has high thermo-sensitivity, good stability, and good reproducibility. This work presents a high-precision low-power temperature sensor using the comprehensive thermal characterization of the ZY-cut quartz tuning fork resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beeby, S.P., Ensell, G., White, N.M., 2000. Microengineered silicon double-ended tuning fork resonators. Eng. Sci. Educ. J., 9(6):265–271. [doi:10.1049/esej:20000606]

    Article  Google Scholar 

  • Benes, E., Gröschl, M., Burger, W., Schmid, M., 1995. Sensors based on piezoelectric resonators. Sens. Actuat. A, 48(1): 1–21. [doi:10.1016/0924-4247(95)00846-2]

    Article  Google Scholar 

  • Castellanos-Gomez, A., Agrait, N., Rubio-Bollinger, G., 2011. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Ultramicroscopy, 111(3):186–190. [doi:10.1016/j.ultramic.2010.11.032]

    Article  Google Scholar 

  • Clubb, D.O., Buu, O.V.L., Bowley, R.M., Nyman, R., Owers-Bradley, J.R., 2004. Quartz tuning fork for viscometers for helium liquids. J. Low Temp. Phys., 136(1–2):1–13. [doi:10.1023/B:JOLT.0000035368.63197.16]

    Article  Google Scholar 

  • Ctistis, G., Frater, E.H., Huisman, S.R., Korterik, J.P., Herek, J.L., Vos, W.L., Pinkse, P.W.H., 2011. Controlling the quality factor of a tuning-fork resonance between 9 and 300 K for scaning-probe microscopy. J. Phys. D, 44(37): 375502. [doi:10.1088/0022-3727/44/37/375502]

    Article  Google Scholar 

  • Dinger, R.J., 1982. The Torsional Tuning Fork as a Temperature. 36th Annual Symp. on Frequency Control, p.265–269. [doi:10.1109/FREQ.1982.200581]

    Chapter  Google Scholar 

  • EerNisse, E.P., Wiggins, R.B., 2001. Review of thickness-shear mode quartz resonator sensors for temperature and pressure. IEEE Sens. J., 1(1):79–87. [doi:10.1109/JSEN.2001.923590]

    Article  Google Scholar 

  • EerNisse, E.P., Ward, R.W., Wiggins, R.B., 1988. Survey of quartz bulk resonator sensor technologies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 35(3):323–330. [doi:10.1109/58.20453]

    Article  Google Scholar 

  • Friedt, J.M., Carry, E., 2007. Introduction to the quartz tuning fork. Am. J. Phys., 75(5):415–422. [doi:10.1119/1.2711826]

    Article  Google Scholar 

  • Gil, M., Manzaneque, T., Hernando-García, J., Ababenh, A., Seidel, H., Rojas, J.L., 2011. Piezoelectric Micro-Scale Tuning Fork Resonators for Sensing Application. 16th Int. Solid-State Sensors, Actuators and Microsystems Conf., p.1496–1499. [doi:10.1109/TRANSDUCERS.2011.5969682]

    Chapter  Google Scholar 

  • Guo, Z., Lin, L., Zhao, Q., Yang, Z., Xie, H., Yan, G., 2010. A lateral-axis microelectromechanical tuning-fork gyro-scope with decoupled comb drive operating at atmospheric pressure. J. Microelectromech. Syst., 19(3): 458–468. [doi:10.1109/JMEMS.2010.2046477]

    Article  Google Scholar 

  • Hammond, D.L., Adams, C.A., Schmidt, P., 1964. A Linear Quartz Crystal Temperature Sensing Element. 19th Annual ISA Conf, p.1–8.

    Google Scholar 

  • He, J., Chen, Z., Lin, J., Dai, J., 2003. A new low-cost high-performance quartz tuning-fork temperature sensor. Sens. Rev., 23(2):134–142. [doi:10.1108/02602280310468242]

    Article  Google Scholar 

  • Jayapandian, J., Swarrup, J.S., Sheela, O.K., Ravi, U., 2012. PSoC-based embedded design and quartz tuning fork for low-temperature measurement system. J. Lab. Autom., 17(2):144–154. [doi:10.1177/2211068211426552]

    Google Scholar 

  • Lee, S., 2002. Fabrication of an array of surface mount device 32.768 kHz quartz tuning fork-type crystals: photolithography and selective etching of an array of quartz tuning fork resonators with subsequent photoresist spray coating. Vacuum, 65(2):161–168. [doi:10.1016/S0042-207X(01)00477-8]

    Article  Google Scholar 

  • Lee, S., Moon, Y., Yoon, J., Chung, H., 2004. Analytical and finite element method design of quartz tuning fork resonator and experimental test samples manufactured using photolithography 1-significant design parameters affecting static capacitance C 0. Vacuum, 75(1):57–69. [doi:10.1016/j.vacuum.2003.12.156]

    Article  Google Scholar 

  • Pisani, M.B., Ren, K.L., Kao, P., Tadigadapa, S., 2011. Application of micromachined Y-cut-quartz bulk acoustic wave resonator for infrarared sensing. J. Microelectromech. Syst. 20(1):288–296. [doi:10.1109/JMEMS.2010.2100030]

    Article  Google Scholar 

  • Ren, K.L., Pisani, M.B., Kao, P., Tadigadapa, S., 2010. Micromachined Quartz Resonator-Based High Performance Thermal Sensors. IEEE Sensors, p.2197–2201. [doi:10.1109/ICSENS.2010.5690612]

    Google Scholar 

  • Rychen, J., Ihn, T., Studerus, P., Herrmann, A., Ensslin, K., Hug, H.J., Schendel, P.J.A., Guntherodt, H.J., 2000. Operation characteristic of piezoelectric quartz tuning fork in high magnetic fields at helium temperatures. Rev. Sci. Instrum., 71(4):1695–1697. [doi:10.1063/1.1150521]

    Article  Google Scholar 

  • Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., et al., 2006. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys., 100(5):051606. [doi:10.1063/1.2336999]

    Article  Google Scholar 

  • Smith, W.L., Spencer, W.J., 1963. Quartz crystal thermometer for measureing temperature deviation in the 10−3 to 10−6 °C range. Rev. Sci. Instrum., 34(3):268–270. [doi:10.1063/1.1718326]

    Article  Google Scholar 

  • Söderkvist, J., 1997. Using FEA to Treat Piezoelectric Low-Frequency Resonators. IEEE Frequency Control Symp., p.634–642. [doi:10.1109/FREQ.1997.638737]

    Google Scholar 

  • Spassov, L., 1992. Piezoelectric quartz resonators as highly sensitive temperature sensors. Sens. Actuat. A, 30(1–2): 67–72. [doi:10.1016/0924-4247(92)80198-C]

    Article  Google Scholar 

  • Spassov, L., Yossiffov, E., Georgiev, V., Vergov, L., 1997. A rotated Y-cut quartz resonator with linear temperature-frequency characteristic. Sens. Actuat. A, 58(3):185–189. [doi:10.1016/S0924-4247(97)01390-3]

    Article  Google Scholar 

  • Tadigadapa, S., Mateti, K., 2009. Sensors: state-of-the-art and perspectives. Meas. Sci. Technol., 20(9): 092001. [doi:10.1088/0957-0233/20/9/092001]

    Article  Google Scholar 

  • Trolier-McKinstry, S., Muralt, P., 2004. Thin film piezoelectrics for MEMS. J. Electroceram., 12(1–2):7–17. [doi:10.1023/B:JECR.0000033998.72845.51]

    Article  Google Scholar 

  • Tsow, F., Tao, N., 2007. Microfabricated tuning fork temperature and infrared sensor. Appl. Phys. Lett., 90(17): 174102. [doi:10.1063/1.2731313]

    Article  Google Scholar 

  • Ueda, T., Kohsaka, F., Iino, T., Yamazaki, D., 1986. Temperature Sensor Using Quartz Tuning Fork Resonator. 40th Annual Symp. on Frequency Control, p.224–229. [doi:10.1109/FREQ.1986.200946]

    Chapter  Google Scholar 

  • Vig, J.R., Filler, R.L., Kim, Y., 1996. Uncooled IR imaging array based on quartz microresonators. J. Microelectromrch. Syst., 5(2):131–137. [doi:10.1109/84.506201]

    Article  Google Scholar 

  • Wade, W.H., Slutsky, L.J., 1962. Quartz crystal thermometer. Rev. Sci. Instrum., 33(2):212–213. [doi:10.1063/1.1746550]

    Article  Google Scholar 

  • Wakatsuki, N., Kagawa, Y., Suzuki, K., Haba, M., 2003. Temperature-frequency characteristics simulation of piezoelectric resonators and their equivalent circuits based on three-dimensional finite element modelling. Int. J. Numer. Model., 16(6):479–492. [doi:10.1002/jnm.514]

    Article  MATH  Google Scholar 

  • Wu, X., Xie, L.Q., Xing, J., Pei, T.D., Wang, H.X., Su, J.B., 2012. A z-axis quartz tuning fork micromachined gyroscope based on shear stress detection. IEEE Sens. J., 12(5):1246–1552. [doi:10.1109/JSEN.2011.2163626]

    Article  Google Scholar 

  • Zeisel, D., Menzi, H., Ullrich, L., 2000. A precise and robust quartz sensor based on tuning fork technonlogy for (SF6)-gas density control. Sens. Actuat. A, 80(3):233–236. [doi:10.1016/S0924-4247(99)00345-3]

    Article  Google Scholar 

  • Zhou, X., Jing, T., Zhang, J., Wang, X., Zhu, Z., 2007. Humidity sensor based on quartz tuning fork coated with solgel-derived nanocrystalline zinc oxid thin film. Sens. Actuat. B, 123(1):299–305. [doi:10.1016/j.snb.2006.08.034]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Xu or Xin Li.

Additional information

Project (No. 11551074) supported by the Science Research Fund of Heilongjiang Provincial Education Department, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Li, X., Duan, Jh. et al. High-precision low-power quartz tuning fork temperature sensor with optimized resonance excitation. J. Zhejiang Univ. - Sci. C 14, 264–273 (2013). https://doi.org/10.1631/jzus.C12MNT05

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C12MNT05

Key words

CLC number

Navigation