Skip to main content
Log in

Waveform feature monitoring scheme for transformer differential protection

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We propose a new scheme for transformer differential protection. This scheme uses different characteristics of the differential currents waveforms (DCWs) under internal fault and magnetizing inrush current conditions. The scheme is based on choosing an appropriate feature of the waveform and monitoring it during the post-disturbance instants. For this purpose, the signal feature is quantified by a discrimination function (DF). Discrimination between internal faults and magnetizing inrush currents is carried out by tracking the signs of three decision-making functions (DMFs) computed from the DFs for three phases. We also present a new algorithm related to the general scheme. The algorithm is based on monitoring the second derivative sign of DCW. The results show that all types of internal faults, even those accompanied by the magnetizing inrush, can be correctly identified from the inrush conditions about half a cycle after the occurrence of a disturbance. Another advantage of the proposed method is that the fault detection algorithm does not depend on the selection of thresholds. Furthermore, the proposed algorithm does not require burdensome computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Othman, A.K., El-Naggar, K.M., 2009. A new digital dynamic algorithm for detection of magnetizing inrush current in transformers. Electr. Power Compon. Syst., 37(4):355–372. [doi:10.1080/15325000802548699]

    Article  Google Scholar 

  • Bi, D.Q., Zhang, X.A., Yang, H.H., Yu, G.W., Wang, X.H., Wang, W.J., 2007. Correlation analysis of waveforms in nonsaturation zone-based method to identify the magnetizing inrush in transformer. IEEE Trans. Power Del., 22(3):1380–1385. [doi:10.1109/TPWRD.2007.900147]

    Article  Google Scholar 

  • Ge, B.M., de Almeida, A.T., Zheng, Q.L., Wang, X.H., 2005. An equivalent instantaneous inductance-based technique for discrimination between inrush current and internal faults in power transformers. IEEE Trans. Power Del., 20(4):2473–2482. [doi:10.1109/TPWRD.2005.855443]

    Article  Google Scholar 

  • Giuliante, A., Clough, G., 1991. Advances in the Design of Differential Protection for Power Transformers. Proc. Georgia Technical Protective Relaying Conf., p.1–12.

  • Guzman, A., Zocholl, S., Benmouryal, G., Altuve, H.J., 2001. A current-based solution for transformer differential protection-part I: problem statement. IEEE Trans. Power Del., 16(4):485–491. [doi:10.1109/61.956726]

    Article  Google Scholar 

  • Hamedani Golshan, M.E., Samet, H., 2006. A new differential protection algorithm base on rising rate variation of second harmonic current. Iran. J. Sci. Technol. Trans. B Eng., 30:643–654.

    Google Scholar 

  • Hamedani Golshan, M.E., Saghaian-nejad, M., Saha, A., Samet, H., 2004. A new method for recognizing internal faults from inrush current conditions in digital differential protection of power transformers. Electr. Power Syst. Res., 71(1):61–71. [doi:10.1016/j.epsr.2003.11.015]

    Article  Google Scholar 

  • He, B., Zhang, X., Bo, Z.Q., 2006. A new method to identify inrush current based on error estimation. IEEE Trans. Power Del., 21(3):1163–1168. [doi:10.1109/TPWRD.2005.861337]

    Article  Google Scholar 

  • Kang, Y.C., Won, S.H., Kang, S.H., Crossley, P.A., 2004. A Transformer Differential Relay with a Core Saturation Detection Algorithm. 8th IEE Int. Conf. on Developments in Power System Protection, p.368–371.

  • Kang, Y.C., Lee, B.E., Kang, S.H., 2007. Transformer protection relay based on the induced voltages. Int. J. Electr. Power Energy Syst., 29(4):281–289. [doi:10.1016/j.ijepes.2006.08.001]

    Article  Google Scholar 

  • Kilic, E., Ozgonenel, O., Usta, O., Thomas, D., 2009. PCA based protection algorithm for transformer internal faults. Turk. J. Electr. Eng. Comput. Sci., 17(2):125–149.

    Google Scholar 

  • Kulidjian, A., Kasztenny, B., Campbell, B., 2001. New Magnetizing Inrush Restraining Algorithm for Power Transformer Protection. IEE Int. Conf. on Developments in Power System Protection, p.181–184.

  • Lin, X., Liu, P., Malik, O.P., 2002. Studies for identification of the inrush based on improved correlation algorithm. IEEE Trans. Power Del., 17(4):901–906. [doi:10.1109/TPWRD.2002.803730]

    Article  Google Scholar 

  • Liu, P., Malik, O.P., Chen, D., Hope, G.S., Guo, Y., 1992. Improved operation of differential protection of power transformers for internal faults. IEEE Trans. Power Del., 7(4):1912–1918. [doi:10.1109/61.156994]

    Article  Google Scholar 

  • Lu, Z., Tang, W.H., Ji, T.Y., Wu, Q.H., 2009. A morphological scheme for inrush identification in transformer protection. IEEE Trans. Power Del., 24(2):560–568. [doi:10.1109/TPWRD.2008.2002982]

    Article  Google Scholar 

  • Ma, X., Shi, J., 2000. A new method for discrimination between fault and magnetizing inrush current using HMM. Electr. Power Syst. Res., 56(1):43–49. [doi:10.1016/ S0378-7796(00)00099-7]

    Article  Google Scholar 

  • Ozgonenel, O., 2006. Wavelet based ANN approach for transformer protection. Int. J. Comput. Intell., 2(3):161–168.

    Google Scholar 

  • Ozgonenel, O., Thomas, D.W.P., Christopoulos, C., 2007. TLM modeling of transformer with internal short circuit faults. Int. J. Comput. Math. Electr. Electron. Eng., 26(5):1304–1323. [doi:10.1108/03321640710823037]

    Article  Google Scholar 

  • Ozgonenel, O., Kilic, E., Khan, A., Rahman, M.A., 2008. A new method for fault detection and identification of incipient faults in power transformers. Electr. Power Compon. Syst., 36(11):1226–1244. [doi:10.1080/15325000802084737]

    Article  Google Scholar 

  • Samantaray, S.R., Panigrahi, B.K., Dash, P.K., Panda, G., 2007. Power transformer protection using S-transform with complex window and pattern recognition approach. IET Gener. Transm. Distr., 1(2):278–286. [doi:10.1049/iet-gtd:20060206]

    Article  Google Scholar 

  • Shin, M.C., Park, C.W., Kim, J.H., 2003. Fuzzy logic-based for large power transformer protection. IEEE Trans. Power Del., 18(3):718–724. [doi:10.1109/TPWRD.2003.813598]

    Article  Google Scholar 

  • Sidhu, T.S., Sachdev, M.S., 1992. On line identification of magnetizing inrush and internal faults in three phase transformers. IEEE Trans. Power Del., 7(4):1885–1890. [doi:10.1109/61.156991]

    Article  Google Scholar 

  • Spiegel, M.R., Stephens, L.J., 2008. Theory and Problems of Statistics (4th Ed.). Schaum Publishing Co., New York.

    Google Scholar 

  • Tripathy, M., Maheshwari, R.P., Verma, H.K., 2008. Radial basis probabilistic neural network for differential protection of power transformer. IET Gener. Transm. Distr., 2(1):43–52. [doi:10.1049/iet-gtd:20070037]

    Article  Google Scholar 

  • Zhang, H., Wen, J.F., Malik, O.P., 2002. Discrimination between fault and magnetizing inrush current in transformers using short-time correlation transform. Int. J. Electr. Power Energy Syst., 24(7):557–562. [doi:10.1016/S0142-0615(01)00065-5]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahador Fani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fani, B., Hamedani Golshan, M.E. & Askarian Abyaneh, H. Waveform feature monitoring scheme for transformer differential protection. J. Zhejiang Univ. - Sci. C 12, 116–123 (2011). https://doi.org/10.1631/jzus.C1010042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1010042

Key words

CLC number

Navigation