Skip to main content
Log in

Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper deals with Wiener model based predictive control of a pH neutralization process. The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM). Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification. Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models, Laguerre-polynomial Wiener models, and linear Laguerre models. The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process. The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC, Laguerre-polynomial Wiener model based NMPC, and linear model predictive control (LMPC). Validation results show that the proposed NMPC outperforms the other three controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aadaleesan, P., Miglan, N., Sharma, R., Saha, P., 2008. Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem. Eng. Sci., 63(15):3932–3941. [doi:10.1016/j.ces.2008.04.043]

    Article  Google Scholar 

  • Akesson, B.M., Toivonen, H.T., Waller, J.B., Nyström, R.H., 2005. Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process. Comput. Chem. Eng., 29(2):323–335. [doi:10.1016/j.compchemeng.2004.09.023]

    Article  Google Scholar 

  • Altinten, A., 2007. Generalized predictive control applied to a pH neutralization process. Comput. Chem. Eng., 31(10): 1199–1204. [doi:10.1016/j.compchemeng.2006.10.005]

    Article  Google Scholar 

  • Arefi, M.M., Montazeri, A., Poshtan, J., Jahed-Motlagh, M.R., 2008. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chem. Eng. J., 138(1–3):274–282. [doi:10.1016/j.cej.2007.05.044]

    Article  Google Scholar 

  • Bao, Z.J., Pi, D.Y., Sun, Y.X., 2007. Nonlinear model predictive control based on support vector machine with multi-kernel. Chin. J. Chem. Eng., 15(5):691–697. [doi:10.1016/S1004-9541(07)60147-5]

    Article  Google Scholar 

  • Böling, J.M., Seborg, D.E., Hespanha, J.P., 2007. Multi-model adaptive control of a simulated pH neutralization process. Control Eng. Pract., 15(6):663–672. [doi:10.1016/j.conengprac.2006.11.008]

    Article  Google Scholar 

  • Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L., 2003. A nonlinear model predictive control system based on Wiener piecewise linear models. J. Process Control, 13(7):655–666. [doi:10.1016/S0959-1524(02)00121-X]

    Article  Google Scholar 

  • de Kruif, B.J., de Vries, T.J.A., 2003. Pruning error minimization in least squares support vector machines. IEEE Trans. Neur. Networks, 14(3):696–702. [doi:10.1109/TNN.2003.810597]

    Article  Google Scholar 

  • Fang, Y., Chow, T.W.S., 2000. Orthogonal wavelet neural networks applying to identification of Wiener model. IEEE Trans. Circ. Syst.-I: Fundam. Theory Appl., 47(4): 591–593. [doi:10.1109/81.841863]

    Article  Google Scholar 

  • Fruzzetti, K.P., Palazoglu, A., McDonald, K.A., 1997. Nonlinear model predictive control using Hammerstein models. J. Process Control, 7(1):31–41. [doi:10.1016/S0959-1524(97)80001-B]

    Article  Google Scholar 

  • Goethals, I., Pelckmans, K., Suykens, J.A.K., de Moor, B., 2005. Identification of MIMO Hammerstein models using least squares support vector machines. Automatica, 41(7): 1263–1272. [doi:10.1016/j.automatica.2005.02.002]

    Article  MATH  MathSciNet  Google Scholar 

  • Gómez, J.C., Baeyens, E., 2004. Wiener model identification and predictive control of a pH neutralisation process. IEE Proc.-Control Theory Appl., 151(3):329–338. [doi:10.1049/ip-cta:20040438]

    Article  Google Scholar 

  • Henson, M.A., Seborg, D.E., 1994. Adaptive nonlinear control of a pH neutralization process. IEEE Trans. Control Syst. Technol., 2(3):169–182. [doi:10.1109/87.317975]

    Article  Google Scholar 

  • Hsu, Y.L., Wang, J.S., 2009. A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. J. Process Control, 19(6):942–953. [doi:10.1016/j.jprocont.2008.12.002]

    Article  Google Scholar 

  • Kalafatis, A., Arifin, N., Wang, L., Cluett, W.R., 1995. A new approach to the identification of pH processes based on the Wiener model. Chem. Eng. Sci., 50(23):3693–3701. [doi:10.1016/0009-2509(95)00214-P]

    Article  Google Scholar 

  • Lakshmi Narayanan, N.R., Krishnaswamy, P.R., Rangaiah, G.P., 1997. An adaptive internal model control strategy for pH neutralization. Chem. Eng. Sci., 52(18):3067–3074. [doi:10.1016/S0009-2509(97)00130-9]

    Article  Google Scholar 

  • Loh, A.P., Looi, K.O., Fong, K.F., 1995. Neural network modeling and control strategies for a pH process. J. Process Control, 5(6):355–362. [doi:10.1016/0959-1524 (95)00005-B]

    Article  Google Scholar 

  • Lovera, M., Gustafsson, T., Verhaegen, M., 2000. Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica, 36(11):1639–1650. [doi:10.1016/S0005-1098(00)00103-5]

    Article  MATH  MathSciNet  Google Scholar 

  • Mahmoodi, S., Poshtan, J., Jahed-Motlagh, M.R., Montazeri, A., 2009. Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model. Chem. Eng. J., 146(3):328–337. [doi:10.1016/j.cej.2008.06.010]

    Article  Google Scholar 

  • Norquay, S.J., Palazoglu, A., Romagnoli, J.A., 1998. Model predictive control based on Wiener models. Chem. Eng. Sci., 53(1):75–84. [doi:10.1016/S0009-2509(97)00195-4]

    Article  Google Scholar 

  • Norquay, S.J., Palazoglu, A., Romagnoli, J.A., 1999. Application of Wiener model predictive control (WMPC) to a pH neutralization experiment. IEEE Trans. Control Syst. Technol., 7(4):437–445. [doi:10.1109/87.772159]

    Article  Google Scholar 

  • Pottmann, M., Seborg, D.E., 1997. A nonlinear predictive control strategy based on radial basis function models. Comput. Chem. Eng., 21(9):965–980. [doi:10.1016/S0098-1354(96)00340-7]

    Article  Google Scholar 

  • Pröll, T., Karim, M.N., 1994. Model predictive pH control using real-time NARX approach. AIChE J., 40(2):269–282. [doi:10.1002/aic.690400207]

    Article  Google Scholar 

  • Saha, P., Krishnan, S.H., Rao, V.S.R., Patwardhan, S.C., 2004. Modeling and predictive control of MIMO nonlinear systems using Wiener-Laguerre models. Chem. Eng. Commun., 191(8):1083–1119. [doi:10.1080/00986440490276452]

    Google Scholar 

  • Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., Jalali, A.A., 2008. Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chem. Eng. J., 143(1–3):282–292. [doi:10.1016/j.cej.2008.05.013]

    Article  Google Scholar 

  • Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neur. Process. Lett., 9(3):293–300. [doi:10.1023/A:1018628609742]

    Article  MathSciNet  Google Scholar 

  • Tötterman, S., Toivonen, H.T., 2009. Support vector method for identification of Wiener models. J. Process Control, 19(7):1174–1181. [doi:10.1016/j.jprocont.2009.03.003]

    Article  Google Scholar 

  • Tulleken, H.J.A.F., 1990. Generalized binary noise test-signal concept for improved identification experiment design. Automatica, 26(1):37–49. [doi:10.1016/0005-1098(90)90156-C]

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik, V., 1998. Statistical Learning Theory. John Wiley, New York.

    MATH  Google Scholar 

  • Wahlberg, B., 1991. System identification using Laguerre models. IEEE Trans. Autom. Control, 36(5):551–562. [doi:10.1109/9.76361]

    Article  MATH  MathSciNet  Google Scholar 

  • Wahlberg, B., 1994. System identification using Kautz models. IEEE Trans. Autom. Control, 39(6):1276–1282. [doi:10.1109/9.293196]

    Article  MATH  MathSciNet  Google Scholar 

  • Wiener, N., 1958. Nonlinear Problems in Random Theory. Technology Press, MIT and Wiley, New York.

    MATH  Google Scholar 

  • Zervos, C.C., Dumont, G.A., 1988. Deterministic adaptive control based on Laguerre series representation. Int. J. Control, 48(6):2333–2359. [doi:10.1080/00207178808906334]

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, Y., 2001. Multivariable System Identification for Process Control. Elsevier Science Ltd., Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhong Zhang.

Additional information

Project (No. 60574022) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Qc., Zhang, Jz. Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. J. Zhejiang Univ. - Sci. C 12, 25–35 (2011). https://doi.org/10.1631/jzus.C0910779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910779

Key words

CLC number

Navigation