Skip to main content
Log in

Multi-objective robot motion planning using a particle swarm optimization model

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Two new heuristic models are developed for motion planning of point robots in known environments. The first model is a combination of an improved particle swarm optimization (PSO) algorithm used as a global planner and the probabilistic roadmap (PRM) method acting as a local obstacle avoidance planner. For the PSO component, new improvements are proposed in initial particle generation, the weighting mechanism, and position- and velocity-updating processes. Moreover, two objective functions which aim to minimize the path length and oscillations, govern the robot’s movements towards its goal. The PSO and PRM components are further intertwined by incorporating the best PSO particles into the randomly generated PRM. The second model combines a genetic algorithm component with the PRM method. In this model, new specific selection, mutation, and crossover operators are designed to evolve the population of discrete particles located in continuous space. Thorough comparisons of the developed models with each other, and against the standard PRM method, show the advantages of the PSO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H., 1985. Visibility-Polygon Search and Euclidean Shortest Path. Proc. 26th Symp. on Foundations of Computer Science, p.155–164.

  • Bhattacharya, P., Gavrilova, M., 2008. Path planning with the required minimum clearance using the Voronoi diagram methodology. IEEE Rob. Autom. Mag., 15(2):58–66. [doi:10.1109/MRA.2008.921540]

    Article  Google Scholar 

  • Canny, J.F., 1985. A Voronoi Method for the Piano-Movers Problem. Proc. IEEE Int. Conf. on Robotics and Automation, 2:530–535.

    Google Scholar 

  • Canny, J.F., 1987. A New Algebraic Method for Robot Motion Planning and Real Geometry. Proc. 28th IEEE Annual Symp. on Foundations of Computer Science, p.39–48.

  • Canny, J.F., 1988. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G., 2003. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput., 7(3):289–304. [doi:10.1109/TEVC.2003.810069]

    Article  Google Scholar 

  • Cen, Y., Wang, L., Zhang, H., 2007. Real-Time Obstacle Avoidance Strategy for Mobile Robot Based on Improved Coordinating Potential Field with Genetic Algorithm. IEEE Int. Conf. on Control Applications, p.415–419. [doi:10.1109/CCA.2007.4389266]

  • Chang, H.C., Liu, J.S., 2009. High-Quality Path Planning for Autonomous Mobile Robots with η 3-Splines and Parallel Genetic Algorithms. IEEE Int. Conf. on Robotics and Biomimetics, p.1671–1677. [doi:10.1109/ROBIO.2009. 4913252]

  • Chen, X., Li, Y., 2006. Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.1722–1727.

  • Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S., 2005. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston.

    MATH  Google Scholar 

  • Davidor, Y., 1990. Robot Programming with a Genetic Algorithm. Proc. IEEE Int. Conf. on Computer Systems and Software Engineering, p.186–191.

  • Fujimura, K., 1996. Path planning with multiple objectives. IEEE Rob. Autom. Mag., 3(1):33–38. [doi:10.1109/100.486659]

    Article  Google Scholar 

  • Gao, M., Xu, J., Tian, J., Wu, H., 2008. Path Planning for Mobile Robot Based on Chaos Genetic Algorithm. Proc. Int. Conf. on Natural Computation, p.409–413. [doi:10.1109/ICNC.2008.627]

  • Ghorbani, A., Shiry, S., Nodehi, A., 2009. Using Genetic Algorithm for a Mobile Robot Path Planning. Proc. Int. Conf. on Future Computer and Communication, p.164–166. [doi:10.1109/ICFCC.2009.28]

  • Gong, D., Lu, L., Li, M., 2009. Robot Path Planning in Uncertain Environments Based on Particle Swarm Optimization. Proc. IEEE Congress on Evolutionary Computation, p.2127–2134. [doi:10.1109/CEC.2009.4983204]

  • Hassan, R., Cohanim, B., de Weck, O., 2004. A Comparison of Particle Swarm Optimization and the Genetic Algorithm. Proc. 46th Structures, Structural Dynamics and Materials Conf., p.1–13.

  • Hwang, Y.K., Ahuja, N., 1992. Gross motion planning—a survey. ACM Comput. Surv., 24(3):219–291. [doi:10.1145/136035.136037]

    Article  Google Scholar 

  • Janabi-Sharifi, F., Vinke, D., 1993. Integration of the Artificial Potential Field Approach with Simulated Annealing for Robot Path Planning. Proc. IEEE Int. Symp. on Intelligent Control, p.536–541.

  • Kang, D.O., Kim, S.H., Lee, H., Bien, Z., 2001. Multiobjective navigation of a guide mobile robot for the visually impaired based on intention inference of obstacles. Auton. Rob., 10(2):213–230. [doi:10.1023/A:1008990105090]

    Article  MATH  Google Scholar 

  • Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M., 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom., 12(4):566–580. [doi:10.1109/70.508439]

    Article  Google Scholar 

  • Keil, J.M., Sack, J.R., 1985. Minimum Decomposition of Polygonal Objects. In: Toussaint, G.T. (Ed.), Computational Geometry. North-Holland, Amsterdam, p.197–216.

    Google Scholar 

  • Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization. Proc. Int. Conf. on Neural Networks, p.1942–1948. [doi:10.1109/ICNN.1995.488968]

  • Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res., 5(1):90–99. [doi:10.1177/027836498600500106]

    Article  MathSciNet  Google Scholar 

  • Kim, J., Pearce, R.A., Amato, N.M., 2003. Extracting Optimal Paths from Roadmaps for Motion Planning. Proc. IEEE Int. Conf. on Robotics and Automation, p.2424–2429.

  • Latombe, J.C., 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • LaValle, S.M., 1998. Rapidly-Exploring Random Trees: a New Tool for Path Planning. Technical Report, TR 98-11, Computer Science Department, Iowa State University, USA.

    Google Scholar 

  • Li, G., Shi, H., 2008. Path Planning for Mobile Robot Based on Particle Swarm Optimization. Proc. Control and Decision Conf., p.3290–3294. [doi:10.1109/CCDC.2008.4597938]

  • Li, Q., Tong, X., Xie, S., Zhang, Y., 2006. Optimum Path Planning for Mobile Robots Based on a Hybrid Genetic Algorithm. Proc. 6th Int. Conf. on Hybrid Intelligent Systems, p.53–58.

  • Liu, G., Yuan, J.P., Xu, Y.S., 2008. Multi-Objective Optimal Trajectory Planning of Space Robot Using Particle Swarm Optimization. Proc. Int. Symp. on Neural Networks, p.171–179.

  • Lozano-Pérez, T., Wesley, M.A., 1979. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM, 22(10):560–570. [doi:10.1145/359156.359164]

    Article  Google Scholar 

  • Masehian, E., Amin-Naseri, M.R., 2004. A Voronoi diagramvisibility graph-potential field compound algorithm for robot path planning. J. Rob. Syst., 21(6):275–300. [doi:10.1002/rob.20014]

    Article  Google Scholar 

  • Masehian, E., Sedighizadeh, D., 2007. Classic and Heuristic Approaches in Robot Motion Planning: a Chronological Review. Proc. World Academy of Science, Engineering and Technology, p.101–106.

  • Min, H.Q., Zhu, J.H., Zheng, X.J., 2005. Obstacle Avoidance with Multiobjective Optimization by PSO in Dynamic Environment. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2950–2956. [doi:10.1109/ICMLC.2005.1527447]

  • Mishra, S.K., 2006. Repulsive Particle Swarm Method on Some Difficult Test Problems of Global Optimization. Available from http://mpra.ub.uni-muenchen.de/1742/ [Accessed on July 16, 2009].

  • Naderan-Tahan, M., Manzuri-Shalmani, M.T., 2009. Efficient and Safe Path Planning for a Mobile Robot Using Genetic Algorithm. Proc. IEEE Congress on Evolutionary Computation, p.2091–2097. [doi:10.1109/CEC.2009.4983199]

  • Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y., 2005. A particle swarm optimization for economic dispatch with no smooth cost functions particle swarm optimization for economic dispatch with any smooth cost functions. IEEE Trans. Power Syst., 20(1):34–42. [doi:10.1109/TPWRS.2004.831275]

    Article  Google Scholar 

  • Qin, Y.Q., Sun, D.B., Li, N., Cen, Y.G., 2004. Path Planning for Mobile Robot Using the Particle Swarm Optimization with Mutation Operator. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2473–2478.

  • Raja, P., Pugazhenthi, S., 2009. Path Planning for Mobile Robots in Dynamic Environments Using Particle Swarm Optimization. Proc. Int. Conf. on Advances in Recent Technologies in Communication and Computing, p.401–405. [doi:10.1109/ARTCom.2009.24]

  • Rekik, C., Jallouli, M., Derbel, N., 2009. Optimal Trajectory of a Mobile Robot by a Genetic Design Fuzzy Logic Controller. Proc. Int. Conf. on Advances in Computational Tools for Engineering and Applications, p.107–111. [doi:10.1109/ACTEA.2009.5227926]

  • Saska, M., Macas, M., Preucil, L., Lhotska, L., 2006. Robot Path Planning Using Particle Swarm Optimization of Ferguson Splines. Proc. IEEE Conf. on Emerging Technologies and Factory Automation, p.833–839. [doi:10.1109/ETFA.2006.355416]

  • Sedighizadeh, D., Masehian, E., 2009. A New Taxonomy for Particle Swarm Optimization (PSO). Proc. 10th Int. Conf. on Automation Technology, p.317–322.

  • Shi, Y., Eberhart, R., 2001. Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight. Proc. Workshop on Particle Swarm Optimization, p.101–106.

  • Shibata, T., Fukuda, T., 1993. Intelligent Motion Planning by Genetic Algorithm with Fuzzy Critic. Proc. IEEE Int. Conf. on Intelligent Control, p.565–570.

  • Solano, J., Jones, D.I., 1993. Generation of Collision-Free Paths: a Genetic Approach. Proc. IEEE Colloquium on Genetic Algorithms for Control Systems Engineering, p.5/1–5/6.

  • Wilson, L.A., Moore, M.D., Picarazzi, J.P., Miquel, S.D.S., 2004. Parallel Genetic Algorithm for Search and Constrained Multi-Objective Optimization. Proc. 18th Int. Parallel and Distributed Processing Symp., p.165. [doi:10.1109/IPDPS.2004.1303161]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellips Masehian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masehian, E., Sedighizadeh, D. Multi-objective robot motion planning using a particle swarm optimization model. J. Zhejiang Univ. - Sci. C 11, 607–619 (2010). https://doi.org/10.1631/jzus.C0910525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910525

Key words

CLC number

Navigation