Skip to main content
Log in

Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina

盐生海藻杜氏盐藻的转录组测序以及注释

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.

摘要

目 的

解析杜氏盐藻代谢过程, 主要关注盐胁迫下累积的代谢物 (渗透平衡产物、多胺和类胡萝卜素) 的代谢。

创新点

本研究通过高通量测序产生了大量来自杜氏盐藻整个生长周期的转录组数据, 描述了杜氏盐藻在盐胁迫下累积的渗透平衡产物、 多胺和类胡萝卜素的代谢过程。另外通过该手段也进一步分析了盐胁迫处理下, 抑制精胺合成底物的供应可能会缓解盐藻增殖对胡萝卜素含量的影响。

方 法

以来自3 个不同生长时期的杜氏盐藻为材料, 进行大规模转录组测序。 在转录组功能注释的基础上, 预测了杜氏盐藻盐胁迫下累积的渗透平衡产物 (图3)、 多胺 (图4) 和类胡萝卜素 (图5) 的代谢路径。 利用相对定量聚合酶链反应 (qPCR) 技术构建了相关代谢路径中关键基因的表达谱 (图6)。

结 论

通过杜氏盐藻转录组测序共获取了 39820 条单一序列。 在功能注释和聚类分析的基础上预测了杜氏盐藻盐胁迫下累积的渗透平衡产物 (甘油和脯氨酸)、 多胺以及类胡萝卜素的代谢路径。 相关代谢途径的关键酶的表达谱分析, 说明盐能够调节甘油、脯氨酸以及多胺的代谢过程。 抑制精胺合成底物的供应可能会缓解盐藻增殖对胡萝卜素含量的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkayala, F., Albionb, R.L., Tillettb, R.L., et al., 2010. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci., 179(5): 437–449. http://dx.doi.org/10.1016/j.plantsci.2010.07.001

    Article  Google Scholar 

  • Bradbury, L.M.T., Shumskaya, M., Tzfadia, O., et al., 2012. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proc. Natl. Acad. Sci. USA, 109: E1888–E1897. http://dx.doi.org/10.1073/pnas.1206002109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewster, J.L., Gustin, M.C., 2014. Hog1:20 years of discovery and impact. Sci. Signal, 7(343): re7. http://dx.doi.org/10.1126/scisignal.2005458

    Article  PubMed  Google Scholar 

  • Cai, M., He, L.H., Yu, T.Y., 2013. Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina. PLoS ONE, 8(4): e62287. http://dx.doi.org/10.1371/journal.pone.0062287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Jiang, J., 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell Physiol., 219(2): 251–258. http://dx.doi.org/10.1002/jcp.21715

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Lao, Y.M., Jiang, J.G., 2011. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Sci. Total Environ., 409(7): 1291–1297. http://dx.doi.org/10.1016/j.scitotenv.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Lu, Y., Jiang, J.G., 2012. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses. PLoS ONE, 7(6): e37578. http://dx.doi.org/10.1371/journal.pone.0037578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa, A., Götz, S., García-Gomez, J.M., et al., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674–3676. http://dx.doi.org/10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  • Couso, I., Vila, M., Rodriguez, H., et al., 2011. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol. Prog., 27(1): 54–60. http://dx.doi.org/10.1002/btpr.527

    Article  CAS  PubMed  Google Scholar 

  • Deng, G., Liang, J., Xu, D., et al., 2013. The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in tibetan hulless barley (Hordeum vulgare var. nudum). Russ. J. Plant Physiol., 60(5): 693–700. http://dx.doi.org/10.1134/S1021443713050038

    Article  CAS  Google Scholar 

  • Ferriols, V.M.E.N., Yaginuma, R., Adachi, M., et al., 2015. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera. Sci. Rep., 5: 10246.

    Article  PubMed  PubMed Central  Google Scholar 

  • García, F., Freile-Pelegrin, Y., Robledo, D., 2007. Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour. Technol., 98(7): 1359–1365. http://dx.doi.org/10.1016/j.biortech.2006.05.051

    Article  PubMed  Google Scholar 

  • Goyal, A., 2007a. Osmoregulation in Dunaliella, part I: effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (HL 25/8). Plant Physiol. Biochem., 45(9): 696–704. http://dx.doi.org/10.1016/j.plaphy.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  • Goyal, A., 2007b. Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol. Biochem., 45(9): 705–710. http://dx.doi.org/10.1016/j.plaphy.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  • Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29(7): 644–654. http://dx.doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamana, K., Matsuzaki, S., 1982. Widespread occurrence of norspermidine and norspermine in eukaryotic algae. J. Biochem., 91(4): 1321–1328. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a133818

    Article  CAS  PubMed  Google Scholar 

  • Huson, D.H., Mitra, S., Ruscheweyh, H.J., et al., 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res., 21(9): 1552–1560. http://dx.doi.org/10.1101/gr.120618.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, L.J., Julien, P., Kuhn, M., et al., 2008. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res., 36(Databse issue): D250–D254. http://dx.doi.org/10.1093/nar/gkm796

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Smith, J.J., Tian, L., et al., 2009. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol., 50(3): 463–479. http://dx.doi.org/10.1093/pcp/pcp005

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Wu, W., Hou, K., et al., 2015. Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(12): 1027–1041. http://dx.doi.org/10.1631/jzus.B1500150

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, D., Hong, L., 2014. Isolation, characterization and functional annotation of the salt tolerance genes through screening the high-quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). Ann. Microbiol., 24(3): 1293–1302. http://dx.doi.org/10.1007/s13213-014-0967-z

    CAS  Google Scholar 

  • Marco, F., Alcázar, R.N., Tiburcio, A.F., et al., 2011. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS, 15(11): 775–782. http://dx.doi.org/10.1089/omi.2011.0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, A., Mandoli, A., Jha, B., 2008. Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J. Ind. Microbiol. Biot., 35(10): 1093–1101. http://dx.doi.org/10.1007/s10295-008-0387-9

    Article  CAS  Google Scholar 

  • Mogedas, B., Casal, C., Forján, E., et al., 2009. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J. Biosci. Bioeng., 108(1): 47–51. http://dx.doi.org/10.1016/j.jbiosc.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  • Moriya, Y., Itoh, M., Okuda, S., et al., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35(Suppl. 2): W182–W185. http://dx.doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., et al., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7): 621–628. http://dx.doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  • Rabbani, S., Beyer, P., Lintig, J.V., et al., 1998. Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol., 116: 1239–1248. http://dx.doi.org/10.1104/pp.116.4.1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rad, F.A., Aksoz, N., Hejazi, M.A., 2011. Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Ira. Afr. J. Biotechnol., 10(12): 2282–2289.

    CAS  Google Scholar 

  • Ramos, A.A., Polle, J., Tran, D., et al., 2011. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Harmful Algae, 26(1): 3–20. http://dx.doi.org/10.4490/algae.2011.26.1.003

    Article  CAS  Google Scholar 

  • Rismani-Yazdi, H., Haznedaroglu, B.Z., Bibby, K., et al., 2011. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148. http://dx.doi.org/10.1186/1471-2164-12-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathasivam, R., Kermanee, P., Roytrakul, S., et al., 2012. Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr. J. Biotechnol., 11(102): 16677–16687.

    CAS  Google Scholar 

  • Smith, D.R., Lee, R.W., Cushman, J.C., et al., 2010. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol., 10: 14. http://dx.doi.org/10.1186/1471-2229-10-14

    Article  Google Scholar 

  • Steinbrenner, J., Linden, H., 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol., 125(2): 810–817. http://dx.doi.org/10.1104/pp.125.2.810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surget-Groba, Y., Montoya-Burgos, J.I., 2010. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res., 20: 1432–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theiss, C., Bohley, P., Voigt, J., 2002. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol., 128(4): 1470–1479. http://dx.doi.org/10.1104/pp.010896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, J., Yu, J., 2009. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. J. Photochem. Photobiol. B, 97(3): 152–160. http://dx.doi.org/10.1016/j.jphotobiol.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Tran, D., Haven, J., Qiu, W.G., et al., 2009. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta, 229(3): 723–729. http://dx.doi.org/10.1007/s00425-008-0866-2

    Article  CAS  PubMed  Google Scholar 

  • Varela, J.C., Pereira, H., Vila, M., et al., 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res., 125: 423–436. http://dx.doi.org/10.1007/s11120-015-0149-2

    Article  CAS  PubMed  Google Scholar 

  • Venekamp, J.H., 2006. Regulation of cytosol acidity in plants under conditions of drought. Physiol. Plantarum, 76(1): 112–117. http://dx.doi.org/10.1111/j.1399-3054.1989.tb05461.x

    Article  Google Scholar 

  • Voigt, J., Deinert, B., Bohley, P., 2000. Subcellular localization and light-dark control of ornithine decarboxylase in the unicellular green alga Chlamydomonas reinhardtii. Physiol. Plant, 108(2000): 353–360. http://dx.doi.org/10.1034/j.1399-3054.2000.108004353.x

    Article  CAS  Google Scholar 

  • Wang, X., Xia, X., Huang, F., et al., 2012. Genetic modification of secondary metabolite biosynthesis in higher plants: a review. J. Biotechnol., 28(10): 1151–1163 (in Chinese).

    CAS  Google Scholar 

  • Wang, Z., Fang, B., Chen, J., et al., 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 11: 726–739. http://dx.doi.org/10.1186/1471-2164-11-726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D.L., Long, H., Liang, J.J., et al., 2012. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics, 13: 133–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, R., Cao, Y., Xu, H., et al., 2011. Analysis of espressed sequence tags from the green alga Dunaliella salina (Chalrophyta). J. Phycol., 47(6): 1454–1460. http://dx.doi.org/10.1111/j.1529-8817.2011.01071.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Miller.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2007AA09Z449)

Electronic supplementary material

Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina

Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina

Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina

Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina

Table S1 Primers of those selective genes involved in the metabolic processes in D. salina

Table S2 Summary of annotation of D. salina transcriptome

Table S3 Top-hit species (viridiplantae) list of D. salina BLAST-annotated uniseqs

11585_2017_260_MOESM8_ESM.xlsx

Table S4 Enzymes identified in metabolism of osmolytes (glycerol and proline), polyamines, and carotenoid through annotation of D. salina transcriptome

Table S5 The best hit of the highlighted enzymes in the metabolic processes of D. salina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Liu, Jl., Midoun, S.Z. et al. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina . J. Zhejiang Univ. Sci. B 18, 833–844 (2017). https://doi.org/10.1631/jzus.B1700088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700088

Key words

CLC number

关键词

Navigation