Skip to main content
Log in

Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4→ Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.

中文概要

题目

纳米银颗粒粘附对牙科合金细胞毒性和抗菌性的影响

目的

评估纳米银颗粒的粘附对牙科合金的细胞毒性和抗菌性的影响,并初步探讨其作用机制。

创新点

运用MTT 法证实钴铬合金和纯钛对小鼠成骨前 体细胞(MC3T3-E1)及大鼠骨髓间充质干细胞 (BMSC)产生细胞毒性,粘附纳米银颗粒后细 胞毒性有所降低。

方法

将化学法制得的3 种浓度的纳米银颗粒分别粘附 于6 种牙科合金表面,扫描电镜观察并确认纳米 银的粘附情况。采用MTT 法检测不同浓度纳米 银颗粒的牙科合金对MC3T3-E1及BMSC的细胞 毒性。评价3 种浓度纳米银颗粒的钴铬合金和纯 钛试件浸提液对金黄色葡萄球菌和变形链球菌 的抗菌性。

结论

牙科合金对MC3T3-E1 和BMSC 细胞具有较强的 毒性,粘附纳米银颗粒后细胞毒性有所降低。3 种浓度的纳米银颗粒细胞毒性之间无显著性差 异,且这3 种浓度纳米银颗粒粘附后对牙科合金 的抗菌性无明显影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta-Torres, L.S., Mendieta, I., Nuñez-Anita, R.E., et al., 2012. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int. J. Nanomed., 7:4777–4786. http://dx.doi.org/10.2147/IJN.S32391

    CAS  Google Scholar 

  • Ai, M., Du, Z., Zhu, S., et al., 2017. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dentalapplication. Dent. Mater., 33(1): 12–22. http://dx.doi.org/10.1016/j.dental.2016.09.038

    Article  CAS  PubMed  Google Scholar 

  • Amooaghaie, R., Saeri, M.R., Azizi, M., 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticle. Ecotoxicol. Environ. Saf., 120:400–408. http://dx.doi.org/10.1016/j.ecoenv.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  • Anisha, B.S., Biswas, R., Chennazhi, K.P., et al., 2013. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol., 62:310–320. http://dx.doi.org/10.1016/j.ijbiomac.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  • Arora, S., Jain, J., Rajwade, J.M., et al., 2008. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett., 179(2): 93–100. http://dx.doi.org/10.1016/j.toxlet.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  • Asharani, P.V., Hande, M.P., Valiyaveettil, S., 2009a. Antiproliferative activity of silver nanoparticles. BMC Cell Biol., 10:65. http://dx.doi.org/10.1186/1471-2121-10-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asharani, P.V., Low-Kah, M.G., Hande, M.P., et al., 2009b. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2): 279–290. http://dx.doi.org/10.1021/nn800596w

    Article  CAS  PubMed  Google Scholar 

  • Asharani, P.V., Sethu, S., Lim, H.K., et al., 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr., 3(1):2. http://dx.doi.org/10.1186/2041-9414-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, C., Pradhan, A., Pakstis, L., et al., 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol., 5(2): 244–249. http://dx.doi.org/10.1166/jnn.2005.034

    Article  CAS  PubMed  Google Scholar 

  • Beer, C., Foldbjerg, R., Hayashi, Y., et al., 2012. Toxicity of silver nanoparticles-nanoparticle or silver ion. Toxicol. Lett., 208(3): 286–292. http://dx.doi.org/10.1016/j.toxlet.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Budtz-Jorgensen, E., 1981. Oral mucosal lesions associated with the wearing of removable dentures. J. Oral Pathol., 10(2): 65–80. http://dx.doi.org/10.1111/j.1600-0714.1981.tb01251.x

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.F., Zhang, H., 2012. Aggregation kinetics of nano silver in different water conditions. Adv. Nat. Sci. Nanosci. Nanotechnol., 3(3):035006. http://dx.doi.org/10.1088/2043-6262/3/3/035006

    Article  Google Scholar 

  • Chladek, G., Kasperski, J., Barszczewska-Rybarek, I., et al., 2013. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int. J. Mol. Sci., 14(1): 563–574. http://dx.doi.org/10.3390/ijms14010563

    Article  CAS  Google Scholar 

  • Chowdhury, N.R., MacGregor-Ramiasa, M., Zilm, P., et al., 2016. ‘Chocolate’ silver nanoparticles: synthesis, antibacterial activity and cytotoxicity. J. Coll. Interf. Sci., 482:151–158. http://dx.doi.org/10.1016/j.jcis.2016.08.003

    Article  Google Scholar 

  • de Lima, R., Seabra, A.B., Duran, N., 2012. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol., 32(11): 867–879. http://dx.doi.org/10.1002/jat.2780

    Article  CAS  PubMed  Google Scholar 

  • Derks, J., Tomasi, C., 2015. Peri-implant health and disease: a systematic review of current epidemiology. J. Clin. Periodontol., 42(S16):S158–S171. http://dx.doi.org/10.1111/jcpe.12334

    Article  PubMed  Google Scholar 

  • Gromov, D.G., Lydia, M.P., Andrey, I.S., et al., 2015. Nucleation and growth of Ag nanoparticles on amorphous carbon surface from vapor phase formed by vacuum evaporation. Appl. Phys. A, 118(4): 1297–1303. http://dx.doi.org/10.1007/s00339-014-8834-0

    Article  CAS  Google Scholar 

  • Fahmy, A., Eisa, W.H., Yosef, M., et al., 2016. Ultra-thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J. Spectrosc., 2016:7489536. http://dx.doi.org/10.1155/2016/7489536

    Article  Google Scholar 

  • Fan, C., Chu, L., Rawls, H.R., et al., 2011. Development of an antimicrobial resin—a pilot study. Dent. Mater., 27(4): 322–328. http://dx.doi.org/10.1016/j.dental.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  • Gliga, A.R., Skoglund, S., Wallinder, I.O., et al., 2014. Sizedependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol., 11(1):11. http://dx.doi.org/10.1186/1743-8977-11-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Gogoi, N., Babu, P.J., Mahanta, C., et al., 2015. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater. Sci. Eng. C, 46:463469. http://dx.doi.org/10.1016/j.msec.2014.10.069

    Article  Google Scholar 

  • Grzegorz, C., Anna, M., Izabela, B.R., et al., 2011. Antifungal activity of denture soft lining material modified by silver nanoparticles—a pilot study. Int. J. Mol. Sci., 12(7): 4735–4744. http://dx.doi.org/10.3390/ijms12074735

    Google Scholar 

  • Hensten-Pettersen, A., Helgeland, K., 1981. Sensitivity of different human cell line in the biologic evaluation of dental resin-based restorative materials. Scand. J. Dent. Res., 89(1): 102–107. http://dx.doi.org/10.1111/j.1600-0722.1981.tb01283.x

    CAS  PubMed  Google Scholar 

  • Hsin, Y.H., Chen, C.F., Huang, S., et al., 2008. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett., 179(3): 130–139. http://dx.doi.org/10.1016/j.toxlet.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  • Huh, A.J., Kwon, Y.J., 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 156(2): 128–145. http://dx.doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S.M., Hess, K.L., Gearhart, J.M., et al., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro, 19(7): 975–983. http://dx.doi.org/10.1016/j.tiv.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  • Jung, R., Kim, Y., Kim, H.S., et al., 2009. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J. Biomater. Sci. Polym. Ed., 20(3): 311–324. http://dx.doi.org/10.1163/156856209X412182

    Article  CAS  PubMed  Google Scholar 

  • Kasraei, S., Sami, L., Hendi, S., et al., 2014. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod., 39(2): 109–114. http://dx.doi.org/10.5395/rde.2014.39.2.109

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W.R., Xie, X.B., Shi, Q.S., et al., 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 85(4): 1115–1122. http://dx.doi.org/10.1007/s00253-009-2159-5

    Article  CAS  PubMed  Google Scholar 

  • Luther, E.M., Koehler, Y., Diendorf, J., et al., 2011. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology, 22(37):375101. http://dx.doi.org/10.1088/0957-4484/22/37/375101

    Article  PubMed  Google Scholar 

  • Massa, M.A., Covarrubias, C., Bittner, M., et al., 2014. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C, 45:146–153. http://dx.doi.org/10.1016/j.msec.2014.08.057

    Article  CAS  Google Scholar 

  • Matsubara, V.H., Igai, F., Tamaki, R., et al., 2015. Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz. Dent. J., 26(5): 458–462. http://dx.doi.org/10.1590/0103-644020130087

    Article  PubMed  Google Scholar 

  • Mishra, S.K., Ferreira, J.M., Kannan, S., 2015. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants. Carbohydr. Polym., 121:37–48. http://dx.doi.org/10.1016/j.carbpol.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  • Mombelli, A., Müller, N., Cionca, N., 2012. The epidemiology of peri-implantitis. Clin. Oral Implants Res., 23(S6):67–76. http://dx.doi.org/10.1111/j.1600-0501.2012.02541.x

    Article  PubMed  Google Scholar 

  • Morra, M., 2007. Biomolecular modification of implant surfaces. Expert Rev. Med. Devic., 4(3): 361–372. http://dx.doi.org/10.1586/17434440.4.3.361

    Article  CAS  Google Scholar 

  • Pan, Y., Jiang, L., Lin, H., et al., 2017. Cell death affected by dental alloys: modes and mechanisms. Dent. Mater. J., 36(1): 82–87. http://dx.doi.org/10.4012/dmj.2016-154

    Article  PubMed  Google Scholar 

  • Park, E.J., Yi, J., Kim, Y., et al., 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. in Vitro, 24(3): 872–878. http://dx.doi.org/10.1016/j.tiv.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  • Park, H.J., Kim, J.Y., Kim, J., et al., 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res., 43(4): 1027–1032. http://dx.doi.org/10.1016/j.watres.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  • Park, M.V., Neigh, A.M., Vermeulen, J.P., et al., 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32(36): 9810–9817. http://dx.doi.org/10.1016/j.biomaterials.2011.08.085

    Article  CAS  PubMed  Google Scholar 

  • Philbrook, N.A., Winn, L.M., Afrooz, A.R., et al., 2011. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxical. Appl. Pharmacol., 257(3): 429–435. http://dx.doi.org/10.1016/j.taap.2011.09.027

    Article  CAS  Google Scholar 

  • Qin, H., Cao, H., Zhao, Y., et al., 2015. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. ACS Appl. Mater. Interf., 7(20): 10785–10794. http://dx.doi.org/10.1021/acsami.5b01310

    Article  CAS  Google Scholar 

  • Ramage, G., Tomsett, K., Wickes, B.L., et al., 2004. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol., 98(1): 53–59. http://dx.doi.org/10.1016/j.tripleo.2003.04.002

    Article  Google Scholar 

  • Riaz Ahmed, K.B., Nagy, A.M., Brown, R.P., et al., 2017. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. in Vitro, 38:179–192. http://dx.doi.org/10.1016/j.tiv.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  • Sabaliauskas, V., Juciute, R., Bukelskiene, V., et al., 2011. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija, 13(3): 75–80.

    PubMed  Google Scholar 

  • Samari, F., Dorostkar, S., 2016. Synthesis of highly stable silver nanoparticles using imidazolium based ionic liquid. Iran Chem. Soc., 13(4): 689–693. http://dx.doi.org/10.1007/s13738-015-0781-y

    Article  CAS  Google Scholar 

  • Sangsuwan, A., Kawasaki, H., Iwasaki, Y., 2016. Thiolated-2-methacryloyloxyethyl phosphorylcholine protected silver nanoparticles as novel photo-induced cell-killing agents. Coll. Surf. B Biointerf., 140:128–134. http://dx.doi.org/10.1016/j.colsurfb.2015.12.037

    Article  CAS  Google Scholar 

  • Shulman, J.D., Rivera-Hidalgo, F., Beach, M.M., 2005. Risk factors associated with denture stomatitis in the United States. J. Oral Pathol. Med., 34(6): 340–346. http://dx.doi.org/10.1111/j.1600-0714.2005.00287.x

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.P., Ramarao, P., 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett., 213(2): 249–259. http://dx.doi.org/10.1016/j.toxlet.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  • Sodagar, A., Kassaee, M.Z., Akhavan, A., et al., 2012. Effect of silver nano particles on flexural strength of acrylic resins. J. Prosthodont. Res., 56(2): 120–124. http://dx.doi.org/10.1016/j.jpor.2011.06.002

    Article  PubMed  Google Scholar 

  • Stanford, C.M., 2008. Surface modifications of dental implants. Aust. Dent. J., 53(S1):S26–S33. http://dx.doi.org/10.1111/j.1834-7819.2008.00038.x

    Article  PubMed  Google Scholar 

  • Stoehr, L.C., Gonzalez, E., Stampfl, A., et al., 2011. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol., 8:36. http://dx.doi.org/10.1186/1743-8977-8-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh, A.K., Pelletier, D.A., Wang, W., et al., 2010. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria. Environ. Sci. Technol., 44(13): 5210–5215. http://dx.doi.org/10.1021/es903684r

    Article  CAS  PubMed  Google Scholar 

  • Tian, B., Chen, W., Yu, D.G., et al., 2016. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J. Mech. Behav. Biomed. Mater., 61:345–359. http://dx.doi.org/10.1016/j.jmbbm.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  • Vogel, K., Westphal, N., Salz, D., et al., 2015. Dental implants coated with a durable and antibacterial film. Surf. Innov., 3(1): 27–38. http://dx.doi.org/10.1680/si.14.00002

    Article  Google Scholar 

  • Volker, C., Oetken, M., Oehlmann, J., 2013. The biological effects and possible modes of action of nanosilver. In: Whitacre, D.M. (Ed.), Reviews of Environmental Contamination and Toxicology Volume 223. Springer New York, New York, p.81–106. http://dx.doi.org/10.1007/978-1-4614-5577-6-4

    Chapter  Google Scholar 

  • Wang, X., Ji, Z., Chang, C., et al., 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small, 10(2): 385–398. http://dx.doi.org/10.1002/smll.201301597

    Article  CAS  PubMed  Google Scholar 

  • Wani, I.A., Khatoon, S., Ganguly, A., et al., 2013. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse micro emulsion method. Coll. Surf. B Biointerf., 101:243–250. http://dx.doi.org/10.1016/j.colsurfb.2012.07.001

    Article  CAS  Google Scholar 

  • Wen, J.C., Jiang, F., Yeh, C.K., et al., 2016. Controlling fungal biofilms with functional drug delivery denture biomaterials. Coll. Surf. B Biointerf., 140:19–27. http://dx.doi.org/10.1016/j.colsurfb.2015.12.028

    Article  CAS  Google Scholar 

  • Wright, J.B., Lam, K., Buret, A.G., et al., 2002. Early healing events in a porcine model of contaminated wounds: effects of nanocrystal line silver on matrix metalloproteinases, cell apoptosis and healing. Wound Repair Regen., 10(3): 141–151. http://dx.doi.org/10.1046/j.1524-475X.2002.10308.x

    Article  PubMed  Google Scholar 

  • Yang, E.J., Kim, S., Kim, J.S., et al., 2012. Inflammasome formation and IL-1ß release by human blood monocytes in response to silver nanoparticles. Biomaterials, 33(28): 6858–6867. http://dx.doi.org/10.1016/j.biomaterials.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  • You, J., Zhang, Y., Hu, Z., 2011. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Coll. Surf. B Biointerf., 85(2): 161–167. http://dx.doi.org/10.1016/j.colsurfb.2011.02.023

    Article  CAS  Google Scholar 

  • Zamperini, C.A., Machado, A.L., Vergani, C.E., et al., 2010. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle. Arch. Oral Biol., 55(10): 763–770. http://dx.doi.org/10.1016/j.archoralbio.2010.06.015

    CAS  PubMed  Google Scholar 

  • Zanette, C., Pelin, M., Crosera, M., et al., 2011. Silver nanoparticles exert a long-lasting ant proliferative effect on human keratinocyte HaCaT cell line. Toxicol. in Vitro, 25(5): 1053–1060. http://dx.doi.org/10.1016/j.tiv.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Shen, Y., Xie, A., et al., 2006. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J. Phys. Chem. B, 110(13): 6615–6620. http://dx.doi.org/10.1021/jp0570216

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Wang, L., Chen, Q., et al., 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 55(2): 283–291. http://dx.doi.org/10.3349/ymj.2014.55.2.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., Li, J., Liu, X., et al., 2012. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int. J. Nanomed., 7:875–884. http://dx.doi.org/10.2147/IJN.S28450

    CAS  Google Scholar 

  • Zielinska, E., Tukaj, C., Radomski, M.W., et al., 2016. Molecular mechanism of silver nanoparticles-induced human osteoblast cell death: protective effect of inducible nitric oxide synthase inhibitor. PLoS ONE, 11(10): e0164137. http://dx.doi.org/10.1371/journal.pone.0164137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-zhen Zhang or Jing Zhu.

Additional information

Project supported by the Public Welfare Projects of Science Technology Department of Zhejiang Province (No. 2013c33139) and the Natural Science Foundation of Zhejiang Province (No. LZ14C200001), China

ORCID: Xiao-ting SHEN, http://orcid.org/0000-0002-3956-6955

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Xt., Zhang, Yz., Xiao, F. et al. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys. J. Zhejiang Univ. Sci. B 18, 615–625 (2017). https://doi.org/10.1631/jzus.B1600555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600555

Keywords

CLC number

关键词

Navigation