Skip to main content
Log in

Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters

生物炭和内生菌促进大豆增加养分吸收和调节营 养参数的叠加作用

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro- and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro- and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents.

摘要

目的

探讨提高大豆作物品质的方法。

创新点

研究了生物炭和植物内生菌联合使用对大豆营养 吸收和营养品质的叠加作用。

方法

采用硬木生物炭和半乳糖霉菌(Galactomyces geotrichum WLL1)对大豆进行处理,按照处理 方式的不同分成四组,包括对照组(无处理)、 G. geotrichum 处理组、生物炭处理组和生物炭与 G. geotrichum 联合处理组。通过对比研究生物炭和内生菌对大豆宏量营养素和微量营养素的吸 收和同化的作用,并观察其对功能性氨基酸、异 黄酮、脂肪酸组成、总糖含量、总酚含量和1,1- 二苯基苦基苯肼(DPPH)自由基清除能力的影 响。

结论

研究结果发现生物炭和内生菌单独或联合处理均 能增加大豆养分的吸收,促进功能性氨基酸的合 成,并提升大豆营养品质。同时,生物炭是一种 额外的营养源,而内生菌能产生生物刺激效应, 两者联合使用具有叠加作用,比单独使用更加有 效。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, H.P., Schoenau, J.J., 2015. Effects of biochar on yield, nutrient recovery, and soil properties in a canola (Brassica napus L)-wheat (Triticum aestivum L) rotation grown under controlled environmental conditions. Bio-Energ. Res., 8(3):1183–1196. http://dx.doi.org/10.1007/s12155-014-9574-x

    CAS  Google Scholar 

  • Albalasmeh, A.A., Berhe, A.A., Ghezzehei, T.A., 2013. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym., 97(2):253–261. http://dx.doi.org/10.1016/j.carbpol.2013.04.072

    Article  CAS  PubMed  Google Scholar 

  • Algar, E., Gutierrez-Mañero, F.J., Garcia-Villaraco, A., et al., 2014. The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol. Biochem., 82:9–16. http://dx.doi.org/10.1016/j.plaphy.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  • Bayabil, H.K., Stoof, C.R., Lehmann, J.C., et al., 2015. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: the Anjeni watershed. Geoderma, 243-244:115–123. http://dx.doi.org/10.1016/j.geoderma.2014.12.015

    Article  CAS  Google Scholar 

  • Bellaloui, N., Ebelhar, M.W., Gillen, A.M., et al., 2011. Soybean seed protein, oil, and fatty acids are altered by S and S+N fertilizers under irrigated or non-irrigated environments. Agric. Sci., 2(4):465–476. http://dx.doi.org/10.4236/as.2011.24060

    CAS  Google Scholar 

  • Bellaloui, N., Bruns, H., Abbas, H.K., et al., 2015. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA. Front. Plant Sci., 6:31. http://dx.doi.org/10.3389/fpls.2015.00031

    PubMed  PubMed Central  Google Scholar 

  • Butnan, S., Deenik, J.L., Toomsan, B., et al., 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237-238:105–116. http://dx.doi.org/10.1016/j.geoderma.2014.08.010

    Article  CAS  Google Scholar 

  • Cheah, S., Malone, S.C., Feik, C.J., 2014. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environ. Sci. Technol., 48(15):8474–8480. http://dx.doi.org/10.1021/es500073r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Corato, U., Pane, C., Bruno, G.L., et al., 2015. Co-products from a biofuel production chain in crop disease management: a review. Crop Prot., 68:12–26. http://dx.doi.org/10.1016/j.cropro.2014.10.025

    Article  Google Scholar 

  • Dong, D., Feng, Q., McGrouther, K., et al., 2015. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J. Soils Sediments, 15(1): 153–162. http://dx.doi.org/10.1007/s11368-014-0984-3

    Article  CAS  Google Scholar 

  • DuBois, M., Gilles, K.A., Hamilton, J.K., et al., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3):350–356. http://dx.doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Elad, Y., Cytryn, E., Harel, Y.M., et al., 2011. The biochar effect: plant resistance to biotic stresses. Phytopathol. Mediterr., 50:335–349.

    Google Scholar 

  • Evans, J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78(1):9–19. http://dx.doi.org/10.1007/BF00377192

    Article  Google Scholar 

  • Gulati, V., Harding, I.H., Palombo, E.A., 2012. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Complement. Altern. Med., 12(1):77. http://dx.doi.org/10.1186/1472-6882-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwenzi, W., Chaukura, N., Mukome, F.N.D., et al., 2015. Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. J. Environ. Manage., 150:250–261. http://dx.doi.org/10.1016/j.jenvman.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  • Haider, G., Koyro, H.W., Azam, F., et al., 2015. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil, 395(1):141–157. http://dx.doi.org/10.1007/s11104-014-2294-3

    Article  CAS  Google Scholar 

  • Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., et al., 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem., 77: 252–260. http://dx.doi.org/10.1016/j.soilbio.2014.06.012

    Article  CAS  Google Scholar 

  • Hao, G., Du, X., Zhao, F., et al., 2010. Fungal endophytesinduced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol. Lett., 32(2):305–314. http://dx.doi.org/10.1007/s10529-009-0139-6

    Article  CAS  PubMed  Google Scholar 

  • Harel, Y.M., Elad, Y., Rav-David, D., et al., 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil, 357(1):245–257. http://dx.doi.org/10.1007/s11104-012-1129-3

    Article  Google Scholar 

  • Hartley, S.E., Eschen, R., Horwood, J.M., et al., 2015. Infection by a foliar endophyte elicits novel arabidopsidebased plant defence reactions in its host, Cirsium arvense. New Phytol., 205(2):816–827. http://dx.doi.org/10.1111/nph.13067

    Article  PubMed  Google Scholar 

  • Heinonsalo, J., Juurola, E., Linden, A., et al., 2015. Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand. Environ. Exp. Bot., 109:103–112. http://dx.doi.org/10.1016/j.envexpbot.2014.08.008

    Article  CAS  Google Scholar 

  • Huang, W.Y., Cai, Y.Z., Hyde, K.D., et al., 2007a. Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J. Microbiol. Biotechnol., 23(9):1253–1263. http://dx.doi.org/10.1007/s11274-007-9357-z

    Article  CAS  Google Scholar 

  • Huang, W.Y., Cai, Y.Z., Xing, J., et al., 2007b. A potential antioxidant resource: endophytic fungi from medicinal plants. Econ. Bot., 61(1):14–30. http://dx.doi.org/10.1663/0013-0001(2007)61[14:APAR EF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Iqbal, J., Siegrist, J.A., Nelson, J.A., et al., 2012. Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol. Biochem., 44(1):81–92. http://dx.doi.org/10.1016/j.soilbio.2011.09.010

    Article  CAS  Google Scholar 

  • Izuta, H., Narahara, Y., Shimazawa, M., et al., 2009. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of bee products and their constituents determined by ESR. Biol. Pharm. Bull., 32(12):1947–1951. http://dx.doi.org/10.1248/bpb.32.1947

    Article  CAS  PubMed  Google Scholar 

  • Jusoh, M., Loh, S.H., Chuah, T.S., et al., 2015. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111:65–71. http://dx.doi.org/10.1016/j.phytochem.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  • Khan, A.L., Lee, I.J., 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol., 13(1):86. http://dx.doi.org/10.1186/1471-2229-13-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A.L., Hamayun, M., Waqas, M., et al., 2012a. Exophiala sp. LHL08 association gives heat stress tolerance by avoiding oxidative damage to cucumber plants. Biol. Fertil. Soils, 48(5):519–529. http://dx.doi.org/10.1007/s00374-011-0649-y

    Article  CAS  Google Scholar 

  • Khan, A.L., Hamayun, M., Radhakrishnan, R., et al., 2012b. Mutualistic association of Paecilomyces formosus LHL10 offers thermotolerance to Cucumis sativus. Antonie Van Leeuwenhoek, 101(2):267–279. http://dx.doi.org/10.1007/s10482-011-9630-x

    Article  PubMed  Google Scholar 

  • Khan, A.L., Kang, S.M., Dhakal, K.H., et al., 2013. Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Sci. Hortic., 155:1–7. http://dx.doi.org/10.1016/j.scienta.2013.02.028

    Article  CAS  Google Scholar 

  • Khan, A.L., Waqas, M., Hussain, J., et al., 2014. Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol. Fertil. Soils, 50(1):75–85. http://dx.doi.org/10.1007/s00374-013-0833-3

    Article  CAS  Google Scholar 

  • Lehmann, J., 2007. A handful of carbon. Nature, 447(7141): 143–144. http://dx.doi.org/10.1038/447143a

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Lou, Z., Wang, Y., et al., 2015. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. Chemosphere, 119:778–785. http://dx.doi.org/10.1016/j.chemosphere.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  • Likar, M., Regvar, M., 2013. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil, 370(1):593–604. http://dx.doi.org/10.1007/s11104-013-1656-6

    Article  CAS  Google Scholar 

  • Malencic, D., Maksimovic, Z., Popovic, M., et al., 2008. Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technol., 99(14):6688–6691. http://dx.doi.org/10.1016/j.biortech.2007.11.040

    Article  CAS  Google Scholar 

  • Martinsen, V., Mulder, J., Shitumbanuma, V., et al., 2014. Farmer-led maize biochar trials: effect on crop yield and soil nutrients under conservation farming. J. Plant Nutr. Soil Sci., 177(5):681–695. http://dx.doi.org/10.1002/jpln.201300590

    Article  CAS  Google Scholar 

  • McGrath, S.P., Zhao, F.J., 1996. Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J. Agric. Sci., 126(1):53–62. http://dx.doi.org/10.1017/S0021859600088808

    Article  CAS  Google Scholar 

  • Miret, J.A., Munné-Bosch, S., 2014. Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids, 46(4): 809–824. http://dx.doi.org/10.1007/s00726-013-1653-3

    Article  CAS  PubMed  Google Scholar 

  • Newman, J.A., Abner, M.L., Dado, R.G., et al., 2003. Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Global Change Biol., 9(3): 425–437. http://dx.doi.org/10.1046/j.1365-2486.2003.00601.x

    Article  Google Scholar 

  • Obledo, E.N., Barragán-Barragán, L.B., Gutiérrez-González, P., et al., 2003. Increased photosyntethic efficiency generated by fungal symbiosis in Agave victoria-reginae. Plant Cell Tissue Organ Cult., 74(3):237–241. http://dx.doi.org/10.1023/A:1024046925472

    Article  CAS  Google Scholar 

  • Panka, D., Piesik, D., Jeske, M., et al., 2013. Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J. Plant Physiol., 170(11):1010–1019. http://dx.doi.org/10.1016/j.jplph.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  • Patel, D.P., Das, A., Kumar, M., et al., 2015. Continuous application of organic amendments enhances soil health, produce quality and system productivity of vegetablebased cropping systems in subtropical eastern Himalayas. Exp. Agric., 51(1):85–106. http://dx.doi.org/10.1017/S0014479714000167

    Article  Google Scholar 

  • Porcel, R., Ruiz-Lozano, J.M., 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot., 55(403):1743–1750. http://dx.doi.org/10.1093/jxb/erh188

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Solano, B., Algar, E., Gutierrez-Mañero, F.J., et al., 2015. Bacterial bioeffectors delay postharvest fungal growth and modify total phenolics, flavonoids and anthocyanins in blackberries. LWT Food Sci. Technol., 61(2):437–443. http://dx.doi.org/10.1016/j.lwt.2014.11.051

    Article  CAS  Google Scholar 

  • Slinkard, K., Singleton, V.L., 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28:49–55.

    CAS  Google Scholar 

  • Steindal, A.L.H., Rødven, R., Hansen, E., et al., 2015. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chem., 174:44–51. http://dx.doi.org/10.1016/j.foodchem.2014.10.129

    Article  CAS  PubMed  Google Scholar 

  • Tegeder, M., 2014. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J. Exp. Bot., 65(7):1865–1878. http://dx.doi.org/10.1093/jxb/eru012

    Article  CAS  PubMed  Google Scholar 

  • Tzin, V., Galili, G., 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant, 3(6):956–972. http://dx.doi.org/10.1093/mp/ssq048

    Article  CAS  PubMed  Google Scholar 

  • Upchurch, R.G., 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett., 30(6):967–977. http://dx.doi.org/10.1007/s10529-008-9639-z

    Article  CAS  PubMed  Google Scholar 

  • Waqas, M., Khan, A.L., Kamran, M., et al., 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17(9):10754–10773. http://dx.doi.org/10.3390/molecules170910754

    Article  CAS  PubMed  Google Scholar 

  • Waqas, M., Khan, A.L., Kang, S.M., et al., 2014. Phytohormoneproducing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol. Fert. Soils, 50(7):1155–1167. http://dx.doi.org/10.1007/s00374-014-0937-4

    Article  CAS  Google Scholar 

  • Waqas, M., Khan, A.L., Hamayun, M., et al., 2015. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. Eur. J. Plant Pathol., 141(4): 803–824. http://dx.doi.org/10.1007/s10658-014-0581-8

    Article  CAS  Google Scholar 

  • Weckopp, S.C., Kopriva, S., 2015. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis? Front. Plant Sci., 5:773. http://dx.doi.org/10.3389/fpls.2014.00773

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai, L., CaiJi, Z., Liu, J., et al., 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biol. Fertil. Soils, 51(1):113–122. http://dx.doi.org/10.1007/s00374-014-0954-3

    Article  CAS  Google Scholar 

  • Zhang, L., Sun, X.Y., Tian, Y., et al., 2014. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic., 176:70–78. http://dx.doi.org/10.1016/j.scienta.2014.06.021

    Article  CAS  Google Scholar 

  • Zhang, Q., Du, Z., Lou, Y., et al., 2015. A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions. CATENA, 127:26–31. http://dx.doi.org/10.1016/j.catena.2014.12.009

    Article  CAS  Google Scholar 

  • Zhao, X., Wang, J.W., Xu, H.J., et al., 2014. Effects of crop-straw biochar on crop growth and soil fertility over a wheat-millet rotation in soils of China. Soil Use Manage., 30(3):311–319. http://dx.doi.org/10.1111/sum.12124

    Article  Google Scholar 

  • Zhou, S.L., Yan, S.Z., Liu, Q.S., et al., 2015. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis. Curr. Microbiol., 70(1):58–66. http://dx.doi.org/10.1007/s00284-014-0680-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Additional information

The two authors contributed equally to this work

Project supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (716001-7)

Electronic supplementary materials: The online version of this article (http://dx.doi.org/10.1631/jzus.B1500262) contains supplementary materials, which are available to authorized users

ORCID: In-Jung LEE, http://orcid.org/0000-0001-7154-4820

Electronic supplementary material

11585_2017_26_MOESM1_ESM.pdf

Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Kim, YH., Khan, A.L. et al. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J. Zhejiang Univ. Sci. B 18, 109–124 (2017). https://doi.org/10.1631/jzus.B1500262

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1500262

Key words

关键词

CLC number

Navigation