Skip to main content
Log in

Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

A pot culture experiment was carried out to investigate the accumulation properties of mercury (Hg) in rice grain and cabbage grown in seven soil types (Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg (CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel, C., Ma, L., 2002. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J. Environ. Qual., 31(2):581–589. [doi:10.2134/jeq2002.0581]

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi, R.K., Sankar, K., 2006. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant. Wildlife Institute of India, Dehradun, India.

    Google Scholar 

  • Chou, S., Huang, C., Huang, Y.H., 2001. Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor: kinetic approach. Environ. Sci. Technol., 35(6):1247–1251. [doi:10.1021/es001129b]

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, S.D., Ow, D.W., 1996. Promises and prospects of phytoremediation. Plant Physiol., 110(3):715–719. [doi:10.1104/pp.110.3.715]

    PubMed  CAS  Google Scholar 

  • Daniels, B.G., Lindsay, R., Thornton, G., 2001. A review of quantitative structural determinations of adsorbates on metal oxide surfaces. Surf. Rev. Lett., 8(01n02):95–120. [doi:10.1142/S0218625X01000987]

    Article  CAS  Google Scholar 

  • Eto, K., Marumoto, M., Takeya, M., 2010. The pathology of methylmercury poisoning (Minamata disease). Neuropathology, 30(5):471–479. [doi:10.1111/j.1440-1789.2010.01119.x]

    Google Scholar 

  • Fernández-Martínez, R., Loredo, J., Ordóñez, A., Rucandio, M.I., 2006. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ. Pollut., 142(2):217–226. [doi:10.1016/j.envpol.2005.10.034]

    Article  PubMed  Google Scholar 

  • GB 15618-1995. Environmental Quality Standard for Soils. Ministry of Environmental Protection of the People’s Republic of China (in Chinese).

  • Gee, G.W., Baunder, J.W., 1986. Particle-Size Analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods. The American Society of Agronomy lnc., Soil Science Society of America lnc., Madison, p.383–411. [doi:10.2136/sssabookser5.1.2ed.c15]

    Google Scholar 

  • Gnamuš, A., Byrne, A.R., Horvat, M., 2000. Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ. Sci. Technol., 34(16):3337–3345. [doi:10.1021/es991419w]

    Article  Google Scholar 

  • Gong, Z.T., Lei, W.J., Chen, Z.C., Gao, Y.X., Zeng, S.G., Zhang, G.L., Xiao, D.N., Li, S.G., 2007. Chinese soil taxonomy. Sci. Found. China, 15(1):41–45 (in Chinese).

    Google Scholar 

  • Harada, M., 1995. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. CRC Crit. Rev. Toxicol., 25(1):1–24. [doi:10.3109/10408449509089885]

    Article  CAS  Google Scholar 

  • Hendershot, W.H., Duquette, M., 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J., 50(3): 605–608. [doi:10.2136/sssaj1986.03615995005000030013x]

    Article  Google Scholar 

  • Huckabee, J.W., Sanz Diaz, F., Janzen, S.A., Solomon, J., 1983. Distribution of mercury in vegetation at Almadén, Spain. Environ. Pollut. Ser. A Ecol. Biol., 30(3):211–224. [doi:10.1016/0143-1471(83)90022-3]

    Article  CAS  Google Scholar 

  • John, M.K., 1972. Mercury uptake from soil by various plant species. Bull. Environ. Contam. Toxicol., 8(2):77–80. [doi:10.1007/BF01684509]

    Article  PubMed  CAS  Google Scholar 

  • Khwaja, A.R., Bloom, P.R., Brezonik, P.L., 2006. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environ. Sci. Technol., 40(3): 844–849. [doi:10.1021/es051085c]

    Article  PubMed  CAS  Google Scholar 

  • Kooner, Z.S., 1993. Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous systems. Environ. Geol., 21(4):242–250. [doi:10.1007/BF00775914]

    Article  CAS  Google Scholar 

  • Li, Y., Chen, C., Li, B., Sun, J., Wang, J., Gao, Y., Zhao, Y., Chai, Z., 2006. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom., 21(1):94–96. [doi:10.1039/b511367a]

    Article  Google Scholar 

  • Loring, D.H., Rantala, R., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Rev., 32(4):235–283. [doi:10.1016/0012-8252(92)90001-A]

    Article  CAS  Google Scholar 

  • Mathur, S.P., Levesque, M.P., Desjardins, J.G., 1979. The relative immobility of fertilizer and native copper in an organic soil under field conditions. Water Air Soil Pollut., 11(2):207–215. [doi:10.1007/BF00286632]

    CAS  Google Scholar 

  • McIntyre, S.H., Montgomery, D.B., Srinivasan, V., Weitz, B.A., 1983. Evaluating the statistical significance of models developed by stepwise regression. J. Marketing Res., 20(1):1–11. [doi:10.2307/3151406]

    Article  Google Scholar 

  • Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst., 29(1):543–566. [doi:10.1146/annurev.ecolsys.29.1.543]

    Article  Google Scholar 

  • Munichandraiah, N., McGrath, K., Prakash, G.K., Aniszfeld, R., Olah, G.A., 2003. A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. J. Power Sources, 117(1-2):98–101. [doi:10.1016/S0378-7753(03)00353-7]

    Article  CAS  Google Scholar 

  • Muñoz, O., Bastias, J.M., Araya, M., Morales, A., Orellana, C., Rebolledo, R., Velez, D., 2005. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol., 43(11):1647–1655. [doi:10.1016/j.fct.2005.05.006]

    Article  PubMed  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development), 1994. Mercury: Background and National Experience with Reducing Risk. OECD, Paris.

    Google Scholar 

  • Onduru, D.D., Du Preez, C.C., 2007. Spatial and temporal aspects of agricultural sustainability in the semi-arid tropics: a case study in Mbeere district, Eastern Kenya. Trop. Sci., 47(3):134–148. [doi:10.1002/ts.207]

    Article  Google Scholar 

  • Rop, O., Valášek, P., Golian, J., Hoza, I., 2008. Dependence of uptake and distribution of mercury in vegetable plants on increasing content of mercury in soil. Sci. J. Phytotech. Zootech., 11(2):53–56.

    Google Scholar 

  • Ryan, J., Estefan, G., Rashid, A., 2007. Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria.

    Google Scholar 

  • Schnell, S., Ratering, S., Jansen, K.H., 1998. Simultaneous determination of iron (III), iron (II), and manganese (II) in environmental samples by ion chromatography. Environ. Sci. Technol., 32(10):1530–1537. [doi:10.1021/es970861g]

    Article  CAS  Google Scholar 

  • Shentu, J.L., He, Z.L., Yang, X.E., Li, T.Q., 2008. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern China. J. Agric. Food Chem., 56(15):6382–6388. [doi:10.1021/jf800882q]

    Article  PubMed  CAS  Google Scholar 

  • Sims, J.T., 1986. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci. Soc. Am. J., 50(2):367–373. [doi:10.2136/sssaj1986.03615995005000020023x]

    Article  CAS  Google Scholar 

  • Spark, K.M., Johnson, B.B., Wells, J.D., 1995. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. Eur. J. Soil Sci., 46(4):621–631. [doi:10.1111/j.1365-2389.1995.tb01358.x]

    Article  CAS  Google Scholar 

  • Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., Timberlake, D., 2004. Sources and remediation for mercury contamination in aquatic systems-a literature review. Environ. Pollut., 131(2):323–336. [doi:10.1016/j.envpol.2004.01.010]

    Article  PubMed  Google Scholar 

  • WHO (World Health Organization), 2002. WHO Technical Report Series: Evaluation of Certain Food Additives and Contaminants. Fifty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, Geneva.

    Google Scholar 

  • WHO (World Health Organization), 2004. Guidelines for Drinking-water Quality, 3rd Ed. WHO, Geneva.

    Google Scholar 

  • WHO (World Health Organization), 2005. WHO Air Quality Guidelines Global Update. Report on a Working Group Meeting. Bonn, Germany, Oct. 18–20, 2005, WHO Regional Office for Europe.

    Google Scholar 

  • Yadav, S.K., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot., 76(2):167–179. [doi:10.1016/j.sajb.2009.10.007]

    Article  CAS  Google Scholar 

  • Yin, Y., Allen, H.E., Li, Y., Huang, C.P., Sanders, P.F., 1996. Adsorption of mercury(II) by soil: effects of pH, chloride, and organic matter. J. Environ. Qual., 25(4):837–844. [doi:10.2134/jeq1996.00472425002500040027x]

    Article  CAS  Google Scholar 

  • Zhang, H., Feng, X., Larssen, T., Qiu, G., Vogt, R.D., 2010. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect., 118(9):1183. [doi:10.1289/ehp.1001915]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-qiang Li or Xiao-e Yang.

Additional information

Project supported by the Ministry of Environmental Protection of China (No. 2011467057) and the Fundamental Research Funds for the Central Universities of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Cf., Wu, Cx., Rafiq, M.T. et al. Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils. J. Zhejiang Univ. Sci. B 14, 1144–1151 (2013). https://doi.org/10.1631/jzus.B1300004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300004

Key words

CLC number

Navigation