Skip to main content
Log in

ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Background and objective

ST13, is the gene encoding the HSP70 interacting protein (HIP). Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues. This study aims at the role of ST13 in the proliferation and migration of CRC cells.

Methods

The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction, followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, plate colony formation, cell-cycle analysis, and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro. Moreover, a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells.

Results

Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation, colony formation, and cell migration in vitro. In contrast, down-regulation of ST13 by lentiviral-based short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro. In addition, down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo.

Conclusions

ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castells, A., Gusella, J.F., Ramesh, V., Rustgi, A.K., 2000. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res., 60(11): 2836–2839.

    CAS  PubMed  Google Scholar 

  • Chant, I.D., Rose, P.E., Morris, A.G., 1995. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol., 90(1):163–168. [doi:10.1111/j.1365-2141.1995.tb03395.x]

    Article  CAS  PubMed  Google Scholar 

  • Ciocca, D.R., Clark, G.M., Tandon, A.K., Fuqua, S.A., Welch, W.J., McGuire, W.L., 1993. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J. Natl. Cancer Inst., 85(7): 570–574. [doi:10.1093/jnci/85.7.570]

    Article  CAS  PubMed  Google Scholar 

  • Csermely, P., 1997. Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem. Sci., 22(5):147–149. [doi:10.1016/S0968-0004(97)01026-8]

    Article  CAS  PubMed  Google Scholar 

  • Derynck, R., Akhurst, R.J., Balmain, A., 2001. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet., 29(2):117–129. [doi:10.1038/ng1001-117]

    Article  CAS  PubMed  Google Scholar 

  • Dong, Q.H., Zheng, S., Hu, Y., Chen, G.X., Ding, J.Y., 2005. Evaluation of ST13 gene expression in colorectal cancer patients. J. Zhejiang Univ.-Sci. B., 6(12):1170–1175. [doi:10.1631/jzus.2005.B1170]

    Article  CAS  PubMed  Google Scholar 

  • Ge, W., Hu, H., Ding, K., Sun, L., Zheng, S., 2006. Protein interaction analysis of ST14 domains and their point and deletion mutants. J. Biol. Chem., 281(11):7406–7412. [doi:10.1074/jbc.M510687200]

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F.U., 1996. Molecular chaperones in cellular protein folding. Nature, 381(6583):571–579. [doi:10.1038/381571a0]

    Article  CAS  PubMed  Google Scholar 

  • Höhfeld, J., Jentsch, S., 1997. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J., 16(20):6209–6216. [doi:10.1093/emboj/16.20. 6209]

    Article  PubMed  Google Scholar 

  • Höhfeld, J., Minami, Y., Hartl, F.U., 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell, 83(4):589–598. [doi:10.1016/0092-8674(95)90099-3]

    Article  PubMed  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., 1991. p53 mutations in human cancers. Science, 253(5015):49–53. [doi:10.1126/science.1905840]

    Article  CAS  PubMed  Google Scholar 

  • Irmer, H., Höhfeld, J., 1997. Characterization of functional domains of the eukaryotic co-chaperone Hip. J. Biol. Chem., 272(4):2230–2235. [doi:10.1074/jbc.272.4.2230]

    Article  CAS  PubMed  Google Scholar 

  • Itoh, S., Itoh, F., Goumans, M.J., Ten Dijke, P., 2000. Signaling of transforming growth factor-β family members through Smad proteins. Eur. J. Biochem., 267(24):6954–6967. [doi:10.1046/j.1432-1327.2000.01828.x]

    Article  CAS  PubMed  Google Scholar 

  • Kimura, E., Enns, R.E., Alcaraz, J.E., Arboleda, J., Slamon, D.J., Howell, S.B., 1993. Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60. J. Clin. Oncol., 11(5): 891–898.

    CAS  PubMed  Google Scholar 

  • Lane, D.P., Midgley, C., Hupp, T., 1993. Tumour suppressor genes and molecular chaperones. Philos. Trans. R. Soc. Lond. B Biol. Sci., 339(1289):369–372, discussion 372–373. [doi:10.1098/rstb.1993.0036]

    Article  CAS  PubMed  Google Scholar 

  • Lanneau, D., Brunet, M., Frisan, E., Solary, E., Fontenay, M., Garrido, C., 2008. Heat shock proteins: essential proteins for apoptosis regulation. J. Cell. Mol. Med., 12(3):743–761. [doi:10.1111/j.1582-4934.2008.00273.x]

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Chai, Z., Li, Y., Liu, D., Bai, Z., Li, Y., Li, Y., Situ, Z., 2009. BZW1, a novel proliferation regulator that promotes growth of salivary muocepodermoid carcinoma. Cancer Lett., 284(1):86–94. [doi:10.1016/j.canlet.2009.04.019]

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Kang, X., Wang, Q., 2011. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-beta-induced epithelial-mesenchymal transition. J. Genet. Genomics, 38(3):111–116. [doi:10.1016/j.jgg.2011.02.001]

    Article  PubMed  Google Scholar 

  • Mahalingam, D., Swords, R., Carew, J.S., Nawrocki, S.T., Bhalla, K., Giles, F.J., 2009. Targeting HSP90 for cancer therapy. Br. J. Cancer, 100(10):1523–1529. [doi:10.1038/sj.bjc.6605066]

    Article  CAS  PubMed  Google Scholar 

  • Mo, Y., Zheng, S., Shen, D., 1996. Differential expression of HSU17714 gene in colorectal cancer and normal colonic mucosa. Chin. J. Oncol., 18(4):241–243 (in Chinese).

    CAS  Google Scholar 

  • Neckers, L., 2007. Heat shock protein 90: the cancer chaperone. J. Biosci., 32(3):517–530. [doi:10.1007/s12038-007-0051-y]

    Article  CAS  PubMed  Google Scholar 

  • Piek, E., Roberts, A.B., 2001. Suppressor and oncogenic roles of transforming growth factor-β and its signaling pathways in tumorigenesis. Adv. Cancer Res., 83:1–54. [doi:10.1016/S0065-230X(01)83001-3]

    Article  CAS  PubMed  Google Scholar 

  • Powers, M.V., Workman, P., 2007. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett., 581(19):3758–3769. [doi:10.1016/j.febslet.2007.05.040]

    Article  CAS  PubMed  Google Scholar 

  • Prapapanich, V., Chen, S., Nair, S.C., Rimerman, R.A., Smith, D.F., 1996a. Molecular cloning of human p48, a transient component of progesterone receptor complexes and an Hsp70-binding protein. Mol. Endocrinol., 10(4):420–431. [doi:10.1210/me.10.4.420]

    Article  CAS  PubMed  Google Scholar 

  • Prapapanich, V., Chen, S., Toran, E.J., Rimerman, R.A., Smith, D.F., 1996b. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell Biol., 16(11):6200–6207.

    CAS  PubMed  Google Scholar 

  • Prapapanich, V., Chen, S., Smith, D.F., 1998. Mutation of Hip’s carboxy-terminal region inhibits a transitional stage of progesterone receptor assembly. Mol. Cell Biol., 18(2): 944–952.

    CAS  PubMed  Google Scholar 

  • Ralhan, R., Kaur, J., 1995. Differential expression of Mr 70000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin. Cancer Res., 1(10): 1217–1222.

    CAS  PubMed  Google Scholar 

  • Roberts, A.B., 1998. Molecular and cell biology of TGF-β. Miner. Electrolyte Metab., 24(2–3):111–119. [doi:10.1159/000057358]

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A.B., Sporn, M.B., 1993. Physiological actions and clinical applications of transforming growth factor-β (TGF-β). Growth Factors, 8(1):1–9. [doi:10.3109/08977199309029129]

    Article  CAS  PubMed  Google Scholar 

  • Schiffer, M., von Gersdorff, G., Bitzer, M., Susztak, K., Böttinger, E.P., 2000. Smad proteins and transforming growth factor-β signaling. Kidney Int., 58(S77):45–52. [doi:10.1046/j.1523-1755.2000.07708.x]

    Article  Google Scholar 

  • Shi, Z., Bai, R., Fu, Z.X., Zhu, Y.L., Wang, R.F., Zheng, S., 2012. Induced pluripotent stem cell-related genes influence biological behavior and 5-fluorouracil sensitivity of colorectal cancer cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(1):11–19. [doi:10.1631/jzus.B1100154]

    Article  CAS  Google Scholar 

  • Shi, Z.Z., Zhang, J.W., Zheng, S., 2007. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor? J. Zhejiang Univ.-Sci. B, 8(3):170–176. [doi:10.1631/jzus.2007.B0170]

    Article  CAS  PubMed  Google Scholar 

  • Soo, E.T., Yip, G.W., Lwin, Z.M., Kumar, S.D., Bay, B.H., 2008. Heat shock proteins as novel therapeutic targets in cancer. In. Vivo, 22(3):311–315.

    CAS  PubMed  Google Scholar 

  • Söti, C., Csermely, P., 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem. Int., 41(6):383–389. [doi:10.1016/S0197-0186(02)00043-8]

    Article  PubMed  Google Scholar 

  • Takayama, S., Reed, J.C., Homma, S., 2003. Heat-shock proteins as regulators of apoptosis. Oncogene, 22(56): 9041–9047. [doi:10.1038/sj.onc.1207114]

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.B., Zheng, S., Zhang, S.Z., Peng, J.P., Ye, F., Fang, S.C., Wu, J.M., 2005. Expression of ST13 in colorectal cancer and adjacent normal tissues. World J. Gastroenterol., 11(3):336–339.

    CAS  PubMed  Google Scholar 

  • Whitesell, L., Lindquist, S.L., 2005. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 5(10):761–772. [doi:10.1038/nrc1716]

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Cao, X., Yu, M.C., Gu, J.F., Shen, Z.H., Ding, M., Yu, D.B., Zheng, S., Liu, X.Y., 2008. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death. Hum. Gene Ther., 19(4):343–353. [doi:10.1089/hum.2007.0137]

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Yu, M., Guan, D., Gu, J., Cao, X., Wang, W., Zheng, S., Xu, Y., Shen, Z., Liu, X., 2010. ASK1-JNK signaling cascade mediates Ad-ST13-induced apoptosis in colorectal HCT116 cells. J. Cell. Biochem., 110(3): 581–588. [doi:10.1002/jcb.22551]

    Article  CAS  PubMed  Google Scholar 

  • Ye, Y.W., Wu, J.H., Wang, C.M., Zhou, Y., Du, C.Y., Zheng, B.Q., Cao, X., Zhou, X.Y., Sun, M.H., Shi, Y.Q., 2011. Sox17 regulates proliferation and cell cycle during gastric cancer progression. Cancer Lett., 307(2):124–131. [doi:10.1016/j.canlet.2011.03.024]

    Article  CAS  PubMed  Google Scholar 

  • Young, J.C., Agashe, V.R., Siegers, K., Hartl, F.U., 2004. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol., 5(10):781–791. [doi:10.1038/nrm1492]

    Article  CAS  PubMed  Google Scholar 

  • Yu, D.B., Zhong, S.Y., Yang, M., Wang, Y.G., Qian, Q.J., Zheng, S., Liu, X.Y., 2009. Potent antitumor activity of double-regulated oncolytic adenovirus-mediated ST13 for colorectal cancer. Cancer Sci., 100(4):678–683. [doi:10.1111/j.1349-7006.2009.01110.x]

    Article  CAS  Google Scholar 

  • Zhang, Y., Cai, X., Schlegelberger, B., Zheng, S., 1998. Assignment of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24→q25 by in situ hybridization. Cytogenet. Cell Genet., 83(1-2):56–57. [doi:10.1159/000015125]

    Article  CAS  PubMed  Google Scholar 

  • Zheng, S., Cai, X., Cao, J., 1997. Application of subtractive hybridization in screening for colorectal cancer negatively related genes. Natl. Med. J. China, 77(4): 256–259 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zheng.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 30973382 and 81101477), the National High-Tech R&D Program (863) of China (No. 2012AA02A506), and the Zhejiang Provincial International Scientific Technology Collaboration Key Project (No. 2009C14010), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, R., Shi, Z., Zhang, Jw. et al. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines. J. Zhejiang Univ. Sci. B 13, 884–893 (2012). https://doi.org/10.1631/jzus.B1200037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200037

Key words

CLC number

Navigation