Skip to main content
Log in

Proteomic analysis of seed germination under salt stress in soybeans

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Soybean (Glycine max (L.) Merrill) is a salt-sensitive crop, and its production is severely affected by saline soils. Therefore, the response of soybean seeds to salt stress during germination was investigated at both physiological and proteomic levels. The salt-tolerant cultivar Lee68 and salt-sensitive cultivar N2899 were exposed to 100 mmol/L NaCl until radicle protrusion from the seed coat. In both cultivars, the final germination percentage was not affected by salt, but the mean germination times of Lee68 and N2899 were delayed by 0.3 and 1.0 d, respectively, compared with controls. In response to salt stress, the abscisic acid content increased, and gibberellic acid (GA1+3) and isopentenyladenosine decreased. Indole-3-acetic acid increased in Lee68, but remained unchanged in N2899. The proteins extracted from germinated seeds were separated using two-dimensional gel electrophoresis (2-DE), followed by Coomassie brilliant blue G-250 staining. About 350 protein spots from 2-DE gels of pH range 3 to 10 and 650 spots from gels of pH range 4 to 7 were reproducibly resolved, of which 18 protein spots showed changes in abundance as a result of salt stress in both cultivars. After matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of the differentially expressed proteins, the peptide mass fingerprint was searched against the soybean UniGene database and nine proteins were successfully identified. Ferritin and 20S proteasome subunit β-6 were up-regulated in both cultivars. Glyceraldehyde 3-phosphate dehydrogenase, glutathione S-transferase (GST) 9, GST 10, and seed maturation protein PM36 were down-regulated in Lee68 by salt, but still remained at a certain level. However, these proteins were present in lower levels in control N2899 and were up-regulated under salt stress. The results indicate that these proteins might have important roles in defense mechanisms against salt stress during soybean seed germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghaei, K., Ehsanpour, A.A., Shah, A.H., Komatsu, S., 2008. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids, 36(1):91–98. [doi:10.1007/s00726-008-0036-7]

    Article  PubMed  Google Scholar 

  • Agrawal, G.K., Hajduch, M., Graham, K., Thelen, J.J., 2008. In-depth investigation of soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol., 148(1):504–518. [doi:10.1104/pp.108.119222]

    Article  PubMed  CAS  Google Scholar 

  • Alam, I., Sharmin, S.A., Kim, K.H., Yang, J.K., Choi, M.S., Lee, B.H., 2010. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil, 333(1–2):491–505. [doi:10.1007/s11104-010-0365-7]

    Article  CAS  Google Scholar 

  • Almansouri, M., Kinet, J.M., Lutts, S., 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231(2):243–254. [doi:10.1023/A:1010378409663]

    Article  CAS  Google Scholar 

  • Bianco, C., Defez, R., 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J. Exp. Bot., 60(11):3097–3107. [doi:10.1093/jxb/erp140]

    Article  PubMed  CAS  Google Scholar 

  • Blackman, S.A., Wettlaufer, S.H., Obendorf, R.L., Leopold, A.C., 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol., 96(3):868–874. [doi:10.1104/pp.96.3.868]

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J.S., 1982. Plant productivity and environment. Science, 218(4571):443–448. [doi:10.1126/science.218.4571.443]

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72(1–2):248–254. [doi:10.1016/0003-2697(76)90527-3]

    Article  PubMed  CAS  Google Scholar 

  • Briat, J.F., Lobréaux, S., Grignon, N., 1999. Regulation of plant ferritin synthesis: how and why. Cell. Mol. Life Sci., 56(1–2):155–166. [doi:10.1007/s000180050014]

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.G., Du, X.M., Zhou, X., Zhao, H.Y., 1997. Levels of cytokinins in the ovules of cotton mutants with altered fiber development. J. Plant Growth Regul., 16(3): 181–185. [doi:10.1007/PL00006994]

    Article  CAS  Google Scholar 

  • Chen, J.G., Zhou, X., Zhang, Y.Z., 1998a. Gibberellin-responding and non-responding dwarf mutants in foxtail millet. Plant Growth Regul., 26(1):19–24. [doi:10.1023/A:1006091601256]

    Article  CAS  Google Scholar 

  • Chen, J.G., Cheng, S.H., Cao, W.X., Zhou, X., 1998b. Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. J. Plant Nutr., 21(1):87–97. [doi:10.1080/01904169809365385]

    Article  CAS  Google Scholar 

  • Cheng, L., Gao, X., Li, S., Shi, M., Javeed, H., Jing, X., Yang, G., He, G., 2010. Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol. Breeding, 26(1):1–17. [doi:10.1007/s11032-009-9371-y]

    Article  CAS  Google Scholar 

  • Duée, E., Olivier-Deyris, L., Fanchon, E., Corbier, C., Branlant, G., Dideberg, O., 1996. Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J. Mol. Biol., 257(4):814–838. [doi:10.1006/jmbi.1996.0204]

    Article  PubMed  Google Scholar 

  • Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckhove, J., Job, D., 2002. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol., 129(2):823–837. [doi:10.1104/pp.002816]

    Article  PubMed  CAS  Google Scholar 

  • Gidrol, X., Lin, W.S., Dégousée, N., Yip, S.F., Kush, A., 1994. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur. J. Biochem., 224(1):21–28. [doi:10.1111/j.1432-1033.1994.tb19990.x]

    Article  PubMed  CAS  Google Scholar 

  • Gygi, S.P., Aebersold, R., 2000. Mass spectrometry and proteomics. Curr. Opin. Chem. Biol., 4(5):489–494. [doi:10.1016/S1367-5931(00)00121-6]

    Article  PubMed  CAS  Google Scholar 

  • Hajduch, M., Ganapathy, A., Stein, J.W., 2005. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol., 137(4):1397–1419. [doi:10.1104/pp.104.056614]

    Article  PubMed  CAS  Google Scholar 

  • Hamayun, M., Khan, S.A., Shinwari, Z.K., Khan, A.L., Ahmad, N., Lee, I.J., 2010a. Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pak. J. Bot., 42(5): 3103–3112.

    CAS  Google Scholar 

  • Hamayun, M., Khan, S.A., Khan, A.L., Shin, J.H., Ahmad, B., Shin, D.H., Lee, I.J., 2010b. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J. Agric. Food Chem., 58(12):7226–7232. [doi: 10.1021/jf101221t]

    Article  PubMed  CAS  Google Scholar 

  • Hsing, Y.C., Tsou, C.H., Hsu, T.F., Chen, Z.Y., Hsieh, K.L., Hsieh, J.S., Chow, T.Y., 1998. Tissue- and stage-specific expression of a soybean (Glycine max L.) seed-maturation biotinylated protein. Plant Mol. Biol., 38(3): 481–490. [doi:10.1023/A:1006079926339]

    Article  PubMed  CAS  Google Scholar 

  • Imin, N., Kerim, T., Weinman, J.J., Rolfe, B.G., 2006. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol. Cell. Proteom., 5(2):274–292. [doi:10.1074/mcp.M500242-MCP200]

    Article  CAS  Google Scholar 

  • Itoh, H., Matsuoka, M., Camille, M., 2003. A role for the ubiquitin-26S proteasome pathway in gibberellin signaling. Trends Plant Sci., 8(10):492–497. [doi:10.1016/j.tplants.2003.08.002]

    Article  PubMed  CAS  Google Scholar 

  • Jeong, M.J., Park, S.C., Byun, M.O., 2001. Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3-phosphate dehydrogenase gene transfer. Mol. Cell, 12(2):185–189.

    CAS  Google Scholar 

  • Jia, G.X., Zhu, Z.Q., Chang, F.Q., Li, Y.X., 2002. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep., 21(2):141–146. [doi:10.1007/s00299-002-0489-1]

    Article  CAS  Google Scholar 

  • Kaur, S., Gupta, A.K., Kaur, N., 1998. Gibberellin A3 reverses the effect of salt stress in chickpea (Cicerarietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regul., 26(2): 85–90. [doi:10.1023/A:1006008711079]

    Article  CAS  Google Scholar 

  • Kim, S.T., Kang, S.Y., Wang, Y., Kim, S.G., Hwang, D.H., Kang, K.Y., 2008. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics, 8(17):3577–3587. [doi:10.1002/pmic.200800183]

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J., 1980. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses. Academic Press, New York, Vol. 2, p.365–402.

    Google Scholar 

  • Lobréaux, S., Hardy, T., Briat, J.F., 1993. Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J., 12(2):651–657.

    PubMed  Google Scholar 

  • Luo, Q.Y., Yu, B.J., Liu, Y.L., 2005. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J. Plant Physiol., 162(9): 1003–1012. [doi:10.1016/j.jplph.2004.11.008]

    PubMed  CAS  Google Scholar 

  • Marrs, K.A., 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47(1):127–158. [doi:10.1146/annurev.arplant.47.1.127]

    Article  PubMed  CAS  Google Scholar 

  • Masuda, T., Goto, F., Yoshihara, T., 2001. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J. Biol. Chem., 276(22):19575–19579. [doi:10.1074/jbc.M011399200]

    Article  PubMed  CAS  Google Scholar 

  • McGonigle, B., Keeler, S.J., Lau, S.M.C., 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol., 124(3):1105–1120. [doi:10.1104/pp.124.3.1105]

    Article  PubMed  CAS  Google Scholar 

  • Mooney, B.P., Thelen, J.J., 2004. High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. Phytochemistry, 65(3):1733–1744. [doi:10.1016/j.phytochem.2004.04.011]

    Article  PubMed  CAS  Google Scholar 

  • Morgan, P.W., 1990. Effects of Abiotic Stresses on Plant Hormone Systems. In: Alscher, R.G., Cumming, J.R. (Eds.), Stress Responses in Plants: Adaptation and Acclimation Mechanism. Wiley-Liss, New York.

    Google Scholar 

  • Munns, R., 2005. Genes and salt tolerance: bringing them together. New Phytol., 167(3):645–660. [doi:10.1111/j.1469-8137.2005.01487.x]

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W., 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9(6):205–262. [doi: 10.1002/elps.1150090603]

    Article  Google Scholar 

  • Nouri, M.Z., Komatsu, S., 2010. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics, 10(10):1930–1945. [doi:10.1002/pmic.200900632]

    Article  PubMed  CAS  Google Scholar 

  • Nouri, M.Z., Toorchi, M., Komatsu, S., 2011. Proteomics Approach for Identifying Abiotic Stress Responsive Proteins in Soybean. In: Sudaric, A. (Ed.), Soybean-Molecular Aspects of Breeding. InTech, Croatia, p.187–214.

    Google Scholar 

  • Ravet, K., Touraine, B., Boucherez, J., Briat, J.F., Gaymard, F., Cellier, F., 2009. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J., 57(3):400–412. [doi:10.1111/j.1365-313X.2008.03698.x]

    Article  PubMed  CAS  Google Scholar 

  • Roxas, V.P., Smith, R.K., Allen, E.R., 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol., 15(10):988–991. [doi:10. 1038/nbt1097-988]

    Article  PubMed  CAS  Google Scholar 

  • Sassa, H., Oguchi, S., Inoue, T., 2000. Primary structural features of the 20S proteasome subunits of rice (Oryza sativa). Gene, 250(1–2):61–66. [doi:10.1016/S0378-1119 (00)00190-6]

    Article  PubMed  CAS  Google Scholar 

  • Skriver, K., Mundy, J., 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2(6):503–512. [doi:10.1105/tpc.2.6.503]

    Article  PubMed  CAS  Google Scholar 

  • Smalle, J., Vierstra, R.D., 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol., 55(1): 555–590. [doi:10.1146/annurev.arplant.55.031903.141801]

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.M., 2002. Does the glyoxylate cycle have an anaplerotic function in plants? Trends Plant Sci., 7(1): 12–13. [doi:10.1016/S1360-1385(01)02189-6]

    Article  PubMed  CAS  Google Scholar 

  • Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A.A., RastgarJazii, F., Motamed, N., Komatsu, S., 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci., 8(1):19 [doi:10.1186/1477-5956-8-19]

    Article  PubMed  Google Scholar 

  • Toorchi, M., Yukawa, K., Nouri, M.Z., Komatsu, S., 2009. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides, 30(12): 2108–2117. [doi:10.1016/j.peptides.2009.09.006]

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Shimizu, K., Kato, M., Ueda, T., 2001. Effects of non-stomatal components on photosynthesis in soybean under salt stress. Jpn. J. Trop. Agric., 45(1):57–63.

    CAS  Google Scholar 

  • Watson, B.S., Asirvatham, V.S., Wang, L.J., Sumner, L.W., 2003. Mapping the proteome of Barrel Medic (Medicagotruncatula). Plant Physiol., 131(3):1104–1123. [doi:10.1104/pp.102.019034]

    Article  PubMed  Google Scholar 

  • Wei, A.L., Chen, Y.Z., 2000. Effect of IAA on soybean seedling’s membrance injury and salt resistance. Acta Bot. Boreal. Occident. Sin., 20(3):410–414 (in Chinese).

    CAS  Google Scholar 

  • Xu, X.Y., Zheng, R., Li, C.M., Gai, J.Y., Yu, D.Y., 2006. Differential proteomic analysis of seed germination in soybean. Prog. Biochem. Biophys., 33(11):1106–1112 (in Chinese).

    Google Scholar 

  • Ying, L.U., Wu, Y.R., Han, B., 2005. Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle. Acta Biochem. Biophys. Sin., 37(6): 406–414.

    Article  Google Scholar 

  • Zhen, Y., Qi, J.L., Wang, S.S., Su, J., Xu, G.H., Zhang, M.S., Miao, L., Peng, X.X., Tian, D., Yang, Y.H., 2007. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol. Plant., 131(4):542–554. [doi:10.1111/j.1399-3054.2007.00979.x]

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.K., 2002. Salt and drought stress signals transduction in plants. Annu. Rev. Plant Biol., 53(1):247–273. [doi:10.1146/annurev.arplant.53.091401.143329]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-yue Yu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30800692), the National Basic Research Program (973) of China (Nos. 2010CB125906 and 2009CB118400), and the National High-Tech R & D Program (863) of China (No. 2006AA10Z1C1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Xy., Fan, R., Zheng, R. et al. Proteomic analysis of seed germination under salt stress in soybeans. J. Zhejiang Univ. Sci. B 12, 507–517 (2011). https://doi.org/10.1631/jzus.B1100061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1100061

Key words

CLC number

Navigation