Skip to main content
Log in

Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1 000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arduini, I., Godbold, D.L., Onnis, A., 1995. Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiol., 15(6): 411–415.

    PubMed  CAS  Google Scholar 

  • Arienzo, M., Adamo, P., Cozzolino, V., 2004. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci. Total Environ., 319(1–3): 13–25. [doi:10.1016/S0048-9697(03)00435-2]

    PubMed  CAS  Google Scholar 

  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., Havaux, M., 2001. Leaf chlorosis in oilseed plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 212(5–6):696–709. [doi:10.1007/s004250000439]

    Article  PubMed  CAS  Google Scholar 

  • Benavides, M., Gallego, M.S., Tomaro, M.L., 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol., 17(1):21–34. [doi:10.1590/S1677-04202005000100003]

    Article  CAS  Google Scholar 

  • Bosac, C., Gardner, S.D.L., Taylor, G., Wilkins, D., 1995. Elevated CO2 and hybrid poplar: a detailed investigation of root and shoot growth and physiology of Populus euramericana, ‘Primo’. Forest Ecol. Manag., 74(1–3): 103–116. [doi:10.1016/0378-1127(94)03506-R]

    Article  Google Scholar 

  • Bowes, G., 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44(1):309–332. [doi:10.1146/annurev.pp.44.060193.001521]

    Article  CAS  Google Scholar 

  • Caggiano, R., D’Emilio, M., Macchiato, M., Ragosta, M., 2005. Heavy metals in ryegrass species versus metal concentrations in atmospheric particulate measured in an industrial area southern Italy. Environ. Monit. Assess., 102 (1–3): 67–84. [doi:10.1007/s10661-005-1595-7]

    Article  PubMed  CAS  Google Scholar 

  • Cheng, W.G., Sakai, H., Yagi, K., Hasegawa, T., 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agric. Forest Meteorol., 149(1):51–58. [doi:10.1016/j.agrformet.2008.07.006]

    Article  Google Scholar 

  • Ci, D.W., Jiang, D., Dai, T.B., Jing, Q., Cao, W.X., 2009. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere, 77(11):1620–1625. [doi:10.1016/j.chemosphere.2009.08.062]

    Article  PubMed  CAS  Google Scholar 

  • Cosio, C., Vollenweider, P., Keller, C., 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): 1. Macrolocalization and phytotoxic effects of cadmium. Environ. Exp. Bot., 58(1–3):64–74. [doi:10.1016/j.envexpbot.2005.06.017]

    Article  CAS  Google Scholar 

  • Daud, M.K., Sun, Y., Dawood, M., Hayat, Y., Variath, M.T., Wu, Y., Raziuddin, Mishkat, U., Salahuddin, Najeeb, U., et al., 2009. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J. Hazard. Mater., 161(1):463–473. [doi:10.1016/j.jhazmat.2008.03.128]

    Article  PubMed  CAS  Google Scholar 

  • Day, F.P., Weber, E.P., Hinkle, C.R., Drake, B.G., 1996. Effects of elevated CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Global Change Biol., 2(2):143–148. [doi:10.1111/j.1365-2486.1996.tb00059.x]

    Article  Google Scholar 

  • Donnelly, A., Craigon, J., Black, C.R., Colls, J.J., Landon, G., 2001. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)? Physiol. Plant., 111(4):501–511. [doi: 10.1034/j.1399-3054.2001.1110410.x]

    Article  PubMed  CAS  Google Scholar 

  • Ferris, R., Taylor, G., 1993. Contrasting effects of elevated CO2 on the root and shoot growth of four native herbs commonly found in chalk grassland. New Phytol., 125(4): 855–866. [doi:10.1111/j.1469-8137.1993.tb03934.x]

    Article  Google Scholar 

  • Fojtová, M., Fulnečková, J., Fajkus, J., Kovařík, A., 2002. Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity. J. Exp. Bot., 53(378):2151–2158. [doi:10.1093/jxb/erf080]

    Article  PubMed  Google Scholar 

  • Franzaring, J., Holz, I., Fangmeier, A., 2008. Different responses of Molinia caerulea plants from three origins to CO2 enrichment and nutrient supply. Acta Oecol., 33(2): 176–187. [doi:10.1016/j.actao.2007.10.006]

    Article  Google Scholar 

  • Geissler, N., Hussin, S., Koyro, H.W., 2009. Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J. Exp. Bot., 60(1):137–151. [doi:10.1093/jxb/ern271]

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, M., Singh, S.P., 2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ. Pollut., 133(2):365–371. [doi:10.1016/j.envpol.2004.05.015]

    Article  PubMed  CAS  Google Scholar 

  • Greger, M., Ögren, E., 1991. Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant., 83(1):129–135. [doi:10.1111/j.1399-3054.1991.tb01291.x]

    Article  CAS  Google Scholar 

  • Guo, H.C., Wang, G.H., 2009. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments. J. Zhejiang Univ.-Sci. B, 10(10):761–768. [doi:10.1631/jzus.B0920101]

    Article  PubMed  Google Scholar 

  • Guo, H.Y., Jia, H.X., Zhu, J.G., Wang, X.R., 2006. Influence of the environmental behavior and ecological effect of cropland heavy metal contaminants by CO2 enrichment in atmosphere. Chin. J. Geochem., 25(s1):212. [doi:10.1007/BF02840155]

    Article  Google Scholar 

  • Högy, P., Fangmeier, A., 2009. Atmospheric CO2 enrichment affects potatoes: 1. aboveground biomass production and tuber yield. Eur. J. Agron., 30(2):78–84. [doi:10.1016/j.eja.2008.07.007]

    Article  Google Scholar 

  • Horie, T., Baker, J.T., Nakagawa, H., Matsui, T., Kim, H.Y., 2000. Crop Ecosystem Responses to Climate Change: Rice. In: Reddy, K.R., Hodges, H.F. (Eds.), Climate Change and Global Crop Productivity. CAB International, Wallingford, Oxon, UK, p.81–106. [doi:10.1079/9780851994390.0081]

    Chapter  Google Scholar 

  • IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and NY, USA, p.1–21.

    Google Scholar 

  • Janssens, I.A., Crookshanks, M., Taylor, G., Ceulemans, R., 1998. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biol., 4(8):871–878. [doi:10.1046/j.1365-2486.1998.00199.x]

    Article  Google Scholar 

  • Jia, H.X., Guo, H.Y., Yin, Y., Wang, Q., Sun, Q., Wang, X.R., Zhu, J.G., 2007. Responses of rice growth to copper stress under free-air CO2 enrichment (FACE). Chin. Sci. Bull., 52(19):2636–2641. [doi:10.1007/s11434-007-0362-2]

    Article  CAS  Google Scholar 

  • Jia, Y., Tang, S.R., Wang, R.G., Ju, X.H., Ding, Y.Z., Tu, S.X., Smith, D.L., 2010. Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. J. Hazard. Mater., 180(1–3):384–394. [doi:10.1016/j.jhazmat.2010.04.043]

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y.B., Yang, X.E., Feng, Y., Jilani, G., 2008. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. J. Zhejiang Univ.-Sci. B, 9(5):427–434. [doi:10.1631/jzus.B0710636]

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y.S., Gray, V.M., 2007. The influence N and P supply on the short-term responses to elevated CO2 in faba bean (Vicia faba L). S. Afr. J. Bot., 73(3):466–470. [doi:10.1016/j.sajb.2007.02.189]

    Article  CAS  Google Scholar 

  • Jin, C.W., Du, S.T., Chen, W.W., Li, G.X., Zhang, Y.S., Zheng, S.J., 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol., 150(1):272–280. [doi:10.1104/pp.109.136721]

    Article  PubMed  CAS  Google Scholar 

  • Jin, V.L., Evans, R.D., 2010. Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia, 163(1):257–266. [doi:10. 1007/s00442-010-1562-z]

    Article  PubMed  Google Scholar 

  • Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron., 77:293–368. [doi:10.1016/S0065-2113(02)77017-X]

    Article  Google Scholar 

  • Kirschbaum, M.U.F., 2004. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol., 6(3):242–253. [doi:10.1055/s-2004-820883]

    Article  PubMed  CAS  Google Scholar 

  • Kiss, Z., Lehoczky, É., Németh, T., 2002. Testing of available heavy metal content of soils in long-term fertilization trials with ryegrass (Lolium perenne L.). Acta Biol. Szeged., 46:107–108.

    Google Scholar 

  • Lee-Ho, E., Walton L.J., Reid, D.M., Yeung, E.C., Kurepin, L.V., 2007. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy. Can. J. Bot., 85(3):324–330. [doi:10.1139/B07-009]

    Article  CAS  Google Scholar 

  • Li, T., Yang, X., Lu, L., Islam, E., He, Z., 2009. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J. Hazard. Mater., 169(1–3):734–741. [doi:10.1016/j.jhazmat.2009.04.004]

    Article  PubMed  CAS  Google Scholar 

  • Li, Z.Y., Tang, S.R., Deng, X.F., Wang, R.G., Song, Z.G., 2010. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: implication for phytoextraction and food safety. J. Hazard. Mater., 177(1–3): 352–361. [doi:10.1016/j.jhazmat.2009.12.039]

    Article  PubMed  CAS  Google Scholar 

  • Lieffering, M., Kim, H.K., Kobayashi, K., Okada, M., 2004. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Res., 88(2–3): 279–286. [doi:10.1016/j.fcr.2004.01.004]

    Article  Google Scholar 

  • Lobell, D.B., Field, C.B., 2008. Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961. Global Change Biol., 14(1):39–45. [doi:10.1111/j.1365-2486.2007.01476.x]

    Google Scholar 

  • Loladze, I., 2002. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol. Evol., 17(10):457–461. [doi:10.1016/S0169-5347(02)02587-9]

    Article  Google Scholar 

  • Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol., 55(1):591–628. [doi:10.1146/annurev.arplant.55.031903.141610]

    Article  PubMed  CAS  Google Scholar 

  • Marseille, F., Tiffreau, C., Laboudigue, A., Lecomte, P., 2000. Impact of vegetation on the mobility and bioavailability of trace elements in a dredged sediment deposit: a greenhouse study. Agronomie, 20(5):547–556. [doi:10.1051/agro:2000149]

    Article  Google Scholar 

  • Matamala, R., Schlesinger, W.H., 2000. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol., 6(8):967–979. [doi:10.1046/j.1365-2486.2000.00374.x]

    Article  Google Scholar 

  • Moya, T.B., Ziska, L.H., Namuco, O.S., Olszyk, D., 1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biol., 4(6):645–656. [doi:10.1046/j.1365-2486.1998.00180.x]

    Article  Google Scholar 

  • Nishizono, H., Ichikawa, H., Suziki, S., Ishii, F., 1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Sci., 101(1):15–20. [doi:10. 1007/BF02371025]

    CAS  Google Scholar 

  • Oksanen, E., Sober, S., Karnosky, D.F., 2001. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ. Pollut., 115(3): 437–446. [doi:10.1016/S0269-7491(01)00233-0]

    Article  PubMed  CAS  Google Scholar 

  • Ostonen, I., Püttsepp, Ü., Biel, C., Alberton, O., Bakker, M.R., Lõhmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A., et al., 2007. Specific root length as an indicator of environmental change. Plant Biosyst., 141(3):426–442. [doi:10.1080/11263500701626069]

    Google Scholar 

  • Palazzo, A.J., Cary, T.J., Hardy, S.E., Lee, C.R., 2003. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J. Environ. Qual., 32(3):834–840. [doi:10.2134/jeq2003.0834]

    Article  PubMed  CAS  Google Scholar 

  • Peng, H.Y., Tian, S.K., Yang, X.E., 2005. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity. J. Zhejiang Univ.-Sci. B, 6(6):546–552. [doi:10.1631/jzus.2005.B0546]

    Article  PubMed  Google Scholar 

  • Phillips, D.L., Johnson, M.G., Tingey, D.T., Catricala, C.E., Hoyman, T.L., Nowak, R.S., 2006. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Global Change Biol., 12(1):61–73. [doi:10.1111/j.1365-2486.2005.01085.x]

    Article  Google Scholar 

  • Prior, S.A., Torbert, H.A., Runion, G.B., Rogers, H.H., 2003. Implications of elevated CO2-induced changes in agroecosystem productivity. J. Crop Prod., 8(1/2):217–244. [doi:10.1300/J144v08n01_09]

    Article  Google Scholar 

  • Pritchard, S.G., Rogers, H.H., 1999. Elevated CO2 and plant structure: a review. Global Change Biol., 5(7):807–837. [doi:10.1046/j.1365-2486.1999.00268.x]

    Article  Google Scholar 

  • Pritchard, S.G., Davis, M.A., Mitchell, R.J., Prior, S.A., Boykin, D.L., Rogers, H.H., Runion, G.B., 2001. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO2 enrichment. Environ. Exp. Bot., 46(1):55–69. [doi:10. 1016/S0098-8472(01)00084-3]

    Article  PubMed  Google Scholar 

  • Rogers, A., Allen, D.J., Davey, P.A., Morgan, P.B., Ainsworth, E.A., Bernacchi, C.J., Cornic, G., Dermody, O., Heaton, E.A., Mahoney, J., et al., 2004. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their lifecycle under Free-Air Carbon Dioxide Enrichment. Plant Cell Environ., 27(4):449–458. [doi:10.1111/j.1365-3040.2004.01163.x]

    Article  CAS  Google Scholar 

  • Rogers, H.H., Peterson, C.M., McCrimmon, J.N., Cure, J.D., 1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ., 15(6):749–752. [doi:10.1111/j.1365-3040.1992.tb01018.x]

    Article  CAS  Google Scholar 

  • Romero-Puertas, M.C., Rodríguez-Serrano, M., Corpas, F.J., del Río, L.A., 2004. Cadmium-induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ., 27(9):1122–1134. [doi:10.1111/j.1365-3040.2004.01217.x]

    Article  CAS  Google Scholar 

  • Sabreen, S., Sugiyama, S.I., 2008. Cadmium phytoextraction capacity in eight C3 herbage grass species. Grassl. Sci., 54(1):27–32. [doi:10.1111/j.1744-697X.2008.00101.x]

    Article  Google Scholar 

  • Sgherri, C.L.M., Quartacci, M.F., Menconi, M., Raschi, A., Navari-Izzo, F., 1998. Interactions between drought and elevated CO2 on alfalfa plants. J. Plant Physiol., 152: 118–124.

    CAS  Google Scholar 

  • Singh, P.K., Tewari, R.K., 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J. Environ. Biol., 24(1): 107–112.

    PubMed  CAS  Google Scholar 

  • Tang, S.R., 2006. The Principle and Methods of Phytoremediation of Contaminated Environment. Scientific Press, Beijing, China, p.1–289 (in Chinese).

    Google Scholar 

  • Tang, S.R., Xi, L., Zheng, J.M., Li, H.Y., 2003. Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull. Environ. Contam. Tox., 71(5):988–997. [doi:10.1007/s00128-003-0224-9]

    Article  CAS  Google Scholar 

  • Urban, O., 2003. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41(1):9–20. [doi:10.1023/A:1025891825050]

    Article  CAS  Google Scholar 

  • Vega, J.M., Garbayo, I., Domínguez, M.J., Vigar, J., 2006. Effect of abiotic stress on photosynthesis and respiration in Chlamydomonas reinhardtii: induction of oxidative stress. Enzyme Microb. Tech., 40(1):163–167. [doi:10.1016/j.enzmictec.2005.10.050]

    Article  CAS  Google Scholar 

  • Wang, X., Taub, D.R., 2010. Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia, 163(1):1–11. [doi:10. 1007/s00442-010-1572-x]

    Article  PubMed  Google Scholar 

  • Wechsung, G., Wechsung, F., Wall, G.W., Adamsen, F.J., Kimball, B.A., Pinter, P.J.Jr., Lamorte, R.L., Garcia, R.L., Kartschall, T.H., 1999. The effects of free-air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat root growth. Global Change Biol., 5(5):519–529. [doi:10.1046/j.1365-2486.1999.00243.x]

    Article  Google Scholar 

  • Wu, H.B., Tang, S.R., Zhang, X.M., Guo, J.K., Song, Z.G., Tian, S., Smith, D., 2009. Using elevated CO2 to increase the biomass of a Sorghum vulgare×Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. J. Hazard. Mater., 1170 (2–3): 861–870. [doi:10.1016/j.jhazmat.2009.05.069]

    Article  PubMed  CAS  Google Scholar 

  • Yang, L.X., Wang, Y.L., Dong, G.C., Gu, H., Huang, J.Y., Zhu, J.G., Yang, H.J., Liu, G., Han, Y., 2007. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res., 102(2):128–140. [doi:10.1016/j.fcr.2007.03.006]

    Article  Google Scholar 

  • Zheng, J.M., Wang, H.Y., Li, Z.Q., Tang, S.R., Chen, Z.Y., 2008. Using elevated carbon dioxide to enhance copper accumulation in Pteridium Revolutum, a copper-tolerant plant, under experimental conditions. Int. J. Phytoremediat., 10(2):161–172. [doi:10.1080/15226510801913934]

    Article  CAS  Google Scholar 

  • Ziska, L.H., Manalo, P.A., Ordonez, R.A., 1996. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature-growth and yield response of 17 cultivars. J. Exp. Bot., 47(9):1353–1359. [doi:10.1093/jxb/47.9.1353]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-rong Tang.

Additional information

Project supported by the Central Public Research Institute Basic Fund for Research and Development (2008-jxh-1), Agro-environmental Protection Institute, Ministry of Agriculture, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Y., Tang, Sr., Ju, Xh. et al. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress. J. Zhejiang Univ. Sci. B 12, 313–325 (2011). https://doi.org/10.1631/jzus.B1000181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000181

Key words

CLC number

Navigation