Skip to main content
Log in

A food-grade industrial arming yeast expressing β-1,3-1,4-glucanase with enhanced thermal stability

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The aim of this work was to construct a novel food-grade industrial arming yeast displaying β-1,3-1,4-glucanase and to evaluate the thermal stability of the glucanase for practical application. For this purpose, a bi-directional vector containing galactokinase (GAL1) and phosphoglycerate kinase 1 (PGK1) promoters in different orientations was constructed. The β-1,3-1,4-glucanase gene from Bacillus subtilis was fused to α-agglutinin and expressed under the control of the GAL1 promoter. α-galactosidase induced by the constitutive PGK1 promoter was used as a food-grade selection marker. The feasibility of the α-galactosidase marker was confirmed by the growth of transformants harboring the constructed vector on a medium containing melibiose as a sole carbon source, and by the clear halo around the transformants in Congo-red plates owing to the expression of β-1,3-1,4-glucanase. The analysis of β-1,3-1,4-glucanase activity in cell pellets and in the supernatant of the recombinant yeast strain revealed that β-1,3-1,4-glucanase was successfully displayed on the cell surface of the yeast. The displayed β-1,3-1,4-glucanase activity in the recombinant yeast cells increased immediately after the addition of galactose and reached 45.1 U/ml after 32-h induction. The thermal stability of β-1,3-1,4-glucanase displayed in the recombinant yeast cells was enhanced compared with the free enzyme. These results suggest that the constructed food-grade yeast has the potential to improve the brewing properties of beer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akada, R., 2002. Genetically modified industrial yeast ready for application. J. Biosci. Bioeng., 94(6):536–544. [doi:10.1263/jbb.94.536]

    CAS  PubMed  Google Scholar 

  • Bamforth, C., 1994. β-glucan and β-glucanases in malting and brewing: practical aspects. Brew. Dig., 69(5):12–16.

    Google Scholar 

  • Bielecki, S., Galas, E., 1991. Microbial β-glucanase different from cellulases. Crit. Rev. Biotechnol., 10(4):275–305. [doi:10.3109/07388559109038212]

    Article  CAS  PubMed  Google Scholar 

  • Boucher, I., Parrot, M., Gaudreau, H., Champagne, C.P., Vadeboncoeur, C., Moineau, S., 2002. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl. Environ. Microbiol., 68(12):6152–6161. [doi:10.1128/AEM.68.12.6152-6161.2002]

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.L., Tsai, L.C., Wen, T.N., Tang, J.B., Yuan, H.S., Shyur, L.F., 2001. Directed mutagenesis of specific active site residues on Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase significantly affects catalysis and enzyme structural stability. J. Biol. Chem., 276(21):17895–17901. [doi:10.1074/jbc.M100843200]

    Article  CAS  PubMed  Google Scholar 

  • Choi, E.S., Sohn, J.H., Rhee, S.K., 1994. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 42(4):587–594. [doi:10.1007/BF00173925]

    Article  CAS  PubMed  Google Scholar 

  • Enevoldsen, B., 1981. Demonstration of melibiase in non-pasteurized lager beers and studies on the heat stability of the enzyme. Carlsberg Res. Comm., 46(1–2):37–42. [doi:10.1007/BF02906196]

    Article  CAS  Google Scholar 

  • Enevoldsen, B., 1985. Determining pasteurization units from residual melibiase activity in lager beer. J. Am. Soc. Brew. Chem. (USA), 43(4):183–189.

    CAS  Google Scholar 

  • Estruch, F., Prieto, J.A., 2003. Construction of a Trp commercial baker’s yeast strain by using food-safe-grade dominant drug resistance cassettes. FEMS Yeast Res., 4(3):329–338. [doi:10.1016/S1567-1356(03)00164-8]

    Article  CAS  PubMed  Google Scholar 

  • Gai, S.A., Wittrup, K.D., 2007. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol., 17(4):467–473. [doi:10.1016/j.sbi.2007.08.012]

    Article  CAS  PubMed  Google Scholar 

  • Gasent-Ramirez, J.M., Codon, A.C., Benitez, T., 1995. Characterization of genetically transformed Saccharomyces cerevisiae baker’s yeasts able to metabolize melibiose. Appl. Environ. Microbiol., 61(6):2113–2121.

    CAS  PubMed  Google Scholar 

  • Gietz, R.D., Sugino, A., 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene, 74(2):527–534. [doi:10.1016/0378-1119(88)90185-0]

    Article  CAS  PubMed  Google Scholar 

  • Guerra, O.G., Rubio, I.G.S., Filho, C.G.D.S., Bertoni, R.A., Govea, R.C.D.S., Vicente, E.J., 2006. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes. J. Microbiol. Methods, 67(3):437–445. [doi:10.1016/j.mimet.2006.04.014]

    Article  CAS  PubMed  Google Scholar 

  • Han, Z.L., Han, S.Y., Zheng, S.P., Lin, Y., 2009. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl. Microbiol. Biotechnol., 85(1):117–126. [doi:10.1007/s00253-009-2067-8]

    Article  CAS  PubMed  Google Scholar 

  • Harman, G.E., Kubicek, C.P., 1998. Trichoderma and Gliocladium. T.J. International Ltd., Padstow, UK, p.327–342.

    Google Scholar 

  • Hinchliffe, E., Box, W.G., 1984. Expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Curr. Genet., 8(6):471–475. [doi:10.1007/BF00433914]

    Article  CAS  Google Scholar 

  • Jeong, D.W., Lee, J.H., Kimc, K.H., Lee, H.J., 2006. A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiol., 23(5):468–475. [doi:10.1016/j.fm.2005.06.003]

    Article  CAS  PubMed  Google Scholar 

  • John, R.M.H., 1995. Genetically-modified brewing yeasts for the 21st century. Progress to Date, 11(16):1613–1627.

    Google Scholar 

  • Kondo, A., Ueda, M., 2004. Yeast cell-surface display-applications of molecular display. Appl. Microbiol. Biotechnol., 64(1):28–40. [doi:10.1007/s00253-003-1492-3]

    Article  CAS  PubMed  Google Scholar 

  • Labrie, S., Bart, C., Vadeboncoeur, C., Moineau, S., 2005. Use of an α-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus. J. Dairy Sci., 88:2341–2347.

    Article  CAS  PubMed  Google Scholar 

  • Li, A.M., Liu, Z.S., Li, Q.X., Yu, L., Wang, D.C., Deng, X.M., 2008. Construction and characterization of bidirectional expression vectors in Saccharomyces cerevisiae. FEMS Yeast Res., 8(1):6–9. [doi:10.1111/j.1567-1364.2007.00335.x]

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Huang, X., Shao, X., Li, L., 2009. Functional cell surface display of endo-beta-1,3-1,4-glucanase in Lactococcus lactis using N-acetylmuraminidase as the anchoring motif. Chin. J. Biotechnol., 25(1):89.

    Google Scholar 

  • Liljestrom-Suominen, P.L., Joutsjoki, V., Korhola, M., 1988. Construction of a stable alpha-galactosidase-producing baker’s yeast strain. Appl. Environ. Microbiol., 54(1):245–249.

    PubMed  Google Scholar 

  • Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol., 40(6):1451–1463. [doi:10.1016/j.enzmictec.2007.01.018]

    Article  CAS  Google Scholar 

  • McCleary, B., 1988. α-galactosidase from luciferine and guar seed. Methods Enzymol., 160:627–632. [doi:10.1016/0076-6879(88)60178-9]

    Article  CAS  Google Scholar 

  • Miller III, C.A., Martinat, M.A., Hyman, L.E., 1998. Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expression vectors with bi-directional promoters for use in Saccharomyces cerevisiae. Nucl. Acids Res., 26(15):3577–3583. [doi:10.1093/nar/26.15.3577]

    Article  CAS  PubMed  Google Scholar 

  • Muller, J.J., Thomsen, K.K., Heinemann, U., 1998. Crystal structure of barley 1,3-1,4-beta-glucanase at 2.0-A resolution and comparison with Bacillus 1,3-1,4-beta-glucanase. J. Biol. Chem., 273(6):3438–3446. [doi:10.1074/jbc.273.6.3438]

    Article  CAS  PubMed  Google Scholar 

  • Murai, T., Ueda, M., Atomi, H., Shibasaki, Y., Kamasawa, N., Osumi, M., Kawaguchi, T., Arai, M., Tanaka, A., 1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 48(4):499–503. [doi:10.1007/s002530051086]

    Article  CAS  PubMed  Google Scholar 

  • Navas, L., Esteban, M., Delgado, M.A., 1991. KAR1-mediated transformation of brewing yeast. J. Inst. Brew., 97:115–118.

    CAS  Google Scholar 

  • Park, S., Xu, Y., Stowell, X.F., Gai, F., Saven, J.G., Boder, E.T., 2006. Limitations of yeast surface display in engineering proteins of high thermostability. Protein Eng. Des. Sel., 19(5):211–217. [doi:10.1093/protein/gzl003]

    Article  CAS  PubMed  Google Scholar 

  • Pronk, J.T., 2002. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol., 68(5):2095–2100. [doi:10.1128/AEM.68.5.2095-2100.2002]

    Article  CAS  PubMed  Google Scholar 

  • Qiao, J., Dong, B., Li, Y., Zhang, B., Cao, Y., 2009. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Appl. Biochem. Biotechnol., 152(2):334–342. [doi:10.1007/s12010-008-8193-4]

    Article  CAS  PubMed  Google Scholar 

  • Ruohola, H., Liljestrom, P.L., Torkkeli, T., Kopu, H., Lehtinen, P., Kalkkinen, N., Korhola, M., 1986. Expression and regulation of the yeast MEL1 gene. FEMS Microbiol. Lett., 34(2):179–185. [doi:10.1111/j.1574-6968.1986.tb01400.x]

    Article  CAS  Google Scholar 

  • Sakai, K., Uchiyama, T., Matahira, Y., Nanjo, F., 1991. Immobilization of chitinolytic enzymes and continuous production of N-acetylglucosamine with the immobilized enzymes. J. Ferment. Bioeng., 72(3):168–172. [doi:10.1016/0922-338X(91)90211-X]

    Article  CAS  Google Scholar 

  • Shibasaki, S., Maeda, H., Ueda, M., 2009. Molecular display technology using yeast-arming technology. Anal. Sci., 25(1):41–49. [doi:10.2116/analsci.25.41]

    Article  CAS  PubMed  Google Scholar 

  • Shusta, E.V., Kieke, M.C., Parke, E., Kranz, D.M., Wittrup, K.D., 1999. Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J. Mol. Biol., 292(5):949–956. [doi:10.1006/jmbi.1999.3130]

    Article  CAS  PubMed  Google Scholar 

  • Štagoj, M., Komel, R., 2008. The GAL induction response in yeasts with impaired galactokinase Gal1p activity. World J. Microbiol. Biotechnol., 24(10):2159–2166. [doi:10.1007/s11274-008-9724-4]

    Article  CAS  Google Scholar 

  • Tanino, T., Fukuda, H., Kondo, A., 2006. Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol. Progr., 22(4):989–993. [doi:10.1021/bp060133+]

    Article  CAS  Google Scholar 

  • Teng, D., Wang, J.H., Fan, Y., Yang, Y.L., Tian, Z.G., Luo, J., Yang, G.P., Zhang, F., 2006. Cloning of β-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl. Microbiol. Biotechnol., 72(4):705–712. [doi:10.1007/s00253-006-0329-2]

    Article  CAS  PubMed  Google Scholar 

  • Teng, D., Fan, Y., Yang, Y.L., Tian, Z.G., Luo, J., Wang, J.H., 2007. Codon optimization of Bacillus licheniformis β-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl. Microbiol. Biotechnol., 74(5):1074–1083. [doi:10.1007/s00253-006-0765-z]

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.R., Register, E., Curotto, J., Kurtz, M., Kelly, R., 1998. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast, 14(6):565–571. [doi:10.1002/(SICI)1097-0061(19980430)14:6〈565::AID-YEA251〉3.0.CO;2-B]

    Article  CAS  PubMed  Google Scholar 

  • Tsai, L.C., Shyur, L.F., Cheng, Y.S., Lee, S.H., 2005. Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase in complex with beta-1,3-1,4-cellotriose. J. Mol. Biol., 354(3):642–651. [doi:10.1016/j.jmb.2005.09.041]

    Article  CAS  PubMed  Google Scholar 

  • Tuan, R.S., 1997. Recombinant Gene Expression Protocols. Humana Press, Philadelphia, USA, p.131–148. [doi:10.1385/0896034801]

    Book  Google Scholar 

  • van Rensburg, P., van Zyl, W.H., Pretorius, I.S., 1997. Over-expression of the Saccharomyces cerevisiae exo-beta-1,3-glucanase gene together with the Bacillus subtilis endo-beta-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in yeast. J. Biotechnol., 55(1):43–53. [doi:10.1016/S0168-1656(97)00059-X]

    Article  PubMed  Google Scholar 

  • Vis, R.B., Lorenz, K., 1997. beta-Glucans: importance in brewing and methods of analysis. LWT Food. Sci. Technol., 30(4):331–336.

    CAS  Google Scholar 

  • Wood, P.J., Erfle, J.D., Teather, R.M., 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol., 160:59–74. [doi:10.1016/0076-6879(88)60107-8]

    Article  CAS  Google Scholar 

  • Zhang, Q., Chen, Q.H., Fu, M.L., Wang, J.L., Zhang, H.B., He, G.Q., 2008. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination. J. Zhejiang Univ. Sci. B, 9(7):527–535. [doi:10.1631/jzus.B0820019]

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Han, S., Wei, D., Lin, Y., Wang, X., 2008. Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties. J. Chem. Technol. Biotechnol., 83(3):329–335. [doi:10.1002/jctb.1814]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Ruan or Guo-Qing He.

Additional information

Project (No. 2006AA10Z316) supported by the Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Zhang, W., Ma, LL. et al. A food-grade industrial arming yeast expressing β-1,3-1,4-glucanase with enhanced thermal stability. J. Zhejiang Univ. Sci. B 11, 41–51 (2010). https://doi.org/10.1631/jzus.B0900185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0900185

Key words

CLC number

Navigation