Skip to main content
Log in

Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khedhairy, A.A., Al-Rokayan, S.A., Al-Misned, F.A., 2001. Cadmium toxicity and cell stress response. Pakistan J. Biol. Sci., 4(8):1046–1049.

    Article  Google Scholar 

  • Alloway, B.J., 1995. Heavy Metals in Soils. Blackie Academic and Professional, London, p.123–151.

    Google Scholar 

  • Baker, A.M.J., McGrath, S.P., Reeves, R.D., Smith, J.A.C., 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biochemical Resource for Phytoremediation of Metal-polluted Soil. Phytoremediation of Contaminated Soil and Water. Lewis, Boca Raton, Florida, p.85–107.

    Google Scholar 

  • Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M., 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J., 59(1):125–133.

    CAS  Google Scholar 

  • Chao, Y.E., Zhang, M., Tian, S.K., Lu, L.L., Yang, X.E., 2008. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant specie (Sedum alfredii Hance). J. Zhejiang Univ. Sci. B, 9(3):243–249. [doi:10.1631/jzus.B0710624]

    Article  PubMed  CAS  Google Scholar 

  • Clemens, S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4):475–486. [doi:10.1007/s004250000458]

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123(3):825–832. [doi:10.1104/pp.123.3.825]

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Solís, J.R., Gutiérrez-Alcalá, G., Romero, L.C., Gotor, C., 2001. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J. Biol. Chem., 276(12):9297–9302. [doi:10.1074/jbc.M009574200]

    Article  PubMed  Google Scholar 

  • Fiske, C.H., Subbarow, Y., 1925. The colorimetric determination of phosphorus. J. Biol. Chem., 66(2):375–400.

    CAS  Google Scholar 

  • Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., Salt, D.E., 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16(8):2176–2191. [doi:10.1105/tpc.104.023036]

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.L., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53(366):1–11. [doi:10.1093/jexbot/53.366.1]

    Article  PubMed  CAS  Google Scholar 

  • Harada, E., Yamaguchi, Y., Koizumi, N., Sano, H., 2002. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol., 159(4): 445–448. [doi:10.1078/0176-1617-00733]

    Article  CAS  Google Scholar 

  • Hawkesford, M.J., 2003. Transporter gene families in plants: the sulphate transporter gene family—redundancy or specialization? Physiol. Plant., 117(2):155–163. [doi:10.1034/j.1399-3054.2003.00034.x]

    Article  CAS  Google Scholar 

  • Jin, X.F., Yang, X.E., Islam, E., Liu, D., Mahmood, Q., 2008. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater., 156(1–3):387–397. [doi:10.1016/j.jhazmat.2007.12.064]

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D., Heimer, Y.M., Abelovich, A., Goldsbrough, P.B., 1995. Cadmium toxicity and resistance in Chlorella sp. Plant Sci., 109(2):129–137. [doi:10.1016/0168-9452(95)04165-Q]

    Article  CAS  Google Scholar 

  • Koprivova, A., Suter, M., den Camp, R.O., Brunold, C., Kopriva, S., 2000. Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol., 122(3):737–746. [doi:10.1104/pp.122.3.737]

    Article  PubMed  CAS  Google Scholar 

  • Küpper, H., Enzo Lombi, E., Zhao, F.J., McGrath, S.P., 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212(1):75–84. [doi:10.1007/s004250000366]

    Article  PubMed  Google Scholar 

  • Lappartient, A.G., Touraine, B., 1996. Demand-driven control of root ATP-sulfurylase activity and SO 2−4 uptake in intact Canola. Plant Physiol., 111(1):147–157.

    PubMed  CAS  Google Scholar 

  • Leustek, T., 1996. Molecular genetics of sulfate assimilation in plants. Physiol. Plant., 97(2):411–419. [doi:10.1034/j.1399-3054.1996.970228.x]

    Article  CAS  Google Scholar 

  • Macfie, S.M., Welburn, P.M., 2000. The cell wall as barrier to uptake of metals ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol., 39(4):413–419. [doi:10.1007/s002440010122]

    Article  PubMed  CAS  Google Scholar 

  • Mutoh, H., Hayashi, Y., 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystins, small cadmium-binding peptides. Biochem. Biophys. Res. Commun., 151(1):32–39. [doi:10.1016/0006-291X(88)90555-4]

    Article  PubMed  CAS  Google Scholar 

  • Nakamori, S., Kobayashi, S., Kobayshi, C., Takagi, H., 1998. Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl. Environ. Microbiol., 64(5): 1607–1611.

    PubMed  CAS  Google Scholar 

  • Noji, M., Inoue, K., Kimura, N., Gouda, A., Saito, K., 1998. Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J. Biol. Chem., 273(49):32739–32745. [doi:10.1074/jbc.273.49.32739]

    Article  PubMed  CAS  Google Scholar 

  • Osslund, T., Chandler, C., Segel, I., 1982. ATP sulfurylase from higher plants: purification and preliminary kinetics studies on the cabbage leaf enzyme. Plant Physiol., 70(1):39–45. [doi:10.1104/pp.70.1.39]

    Article  PubMed  CAS  Google Scholar 

  • Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M., 1998. From vacuolar GS-X pumps to multispecific ABC transporters. Ann. Rev. Plant Physiol. Plant Mol. Biol., 49(1):727–760. [doi:10.1146/annurev.arplant.49.1.727]

    Article  CAS  Google Scholar 

  • Reed, R.H., Gadd, G.M., 1990. Metal Tolerance in Eukaryotic and Prokaryotic Algae. In: Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton, Florida, p.105–118.

    Google Scholar 

  • Saito, K., Yokoyama, H., Noji, M., Murakoshi, I., 1995. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J. Biol. Chem., 270(27): 16321–16326. [doi:10.1074/jbc.270.27.16321]

    Article  PubMed  CAS  Google Scholar 

  • Su, D.C., Huang, W.C., 2002. The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ. Sci., 22(1):48–51 (in Chinese).

    CAS  Google Scholar 

  • Wangeline, A.L., Burkhead, J.L., Hale, K.L., Lindblom, S.D., Terry, N., Pilon, M., Pilon-Smits, E.A.H., 2004. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J. Environ. Qual., 33(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, C., Oliver, D., 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell, 10(9):1539–1550. [doi:10.1105/tpc.10.9.1539]

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y.H., Yang, X.E., Ye, Z.Q., He, Z.L., 2004. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J. Environ. Sci. Health, 39(11–12):2925–2940.

    CAS  Google Scholar 

  • Yang, X.E., Yu, J.D., Ni, W.Z., Zhu, C., 2002a. Quality of agricultural environment and safety of agricultural products (a review). J. China Agric. Sci. Technol., 4(4): 3–9 (in Chinese).

    Google Scholar 

  • Yang, X.E., Long, X.X., Ni, W.Z., 2002b. Sedum alfredii H.—a new ecotype of Zn-hyperaccumulator plant species native to China. Chin. Sci. Bull., 47(19):1003–1006.

    Google Scholar 

  • Yang, X.E., Long, X.X., Ye, H.B., He, Z.L., Calvert, D.V., Stoffella, P.J., 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii H.). Plant and Soil, 259(1–2):181–189. [doi:10.1023/B:PLSO.0000020956.24027.f2]

    Article  CAS  Google Scholar 

  • Yang, X.E., Feng, Y., He, Z.L., Stoffella, P.J., 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4):339–353. [doi:10.1016/j.jtemb.2005.02.007]

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.E., Li, T.Q., Long, X.X., Xiong, Y.H., He, Z.L., Stoffella, P.J., 2006. Dynamics of zinc uptake and accumulation in the hyperaccumulating and nonhyperaccumulating ecotypes of Sedum alfredii Hance. Plant and Soil, 284(1–2):109–119. [doi:10.1007/s11104-006-0033-0]

    Article  CAS  Google Scholar 

  • Zenk, M.H., 1996. Heavy detoxification in higher plants—a review. Gene, 179(1):21–30. [doi:10.1016/S0378-1119(96)00422-2]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-e Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30630046) and the Hi-Tech Research and Development Program (863) of China (No. 2006AA06Z386), and the Program for Changjiang Scholars and Innovative Research Team in University, China (No. IRT0536)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Wd., Liang, J., Yang, Xe. et al. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance. J. Zhejiang Univ. Sci. B 10, 251–257 (2009). https://doi.org/10.1631/jzus.B0820169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820169

Key words

CLC number

Navigation