Skip to main content
Log in

Experimental investigation of vortex-ring cavitation

涡环空化的实验研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Vortex-ring cavitation occurs when the pressure inside a torus-shaped core of a vortex ring falls below the vapor pressure of the ambient liquid. By generating a vapor bubble in a rigid tube, a toroidal cavity can be produced outside the tube. The pulsation and propagation behaviors of vortex-ring cavitation are studied using a high-speed video camera and a hydrophone. The experimental results show that the cavity continues to oscillate with a period that depends heavily on the maximal cross-section radius of the cavity and circulation of the vortex flow, under the influence of the surrounding vortex flow field. It is also shown that the cross-radial oscillation of the toroidal cavity can be measured both by a high-speed camera and hydrophone. Moreover, three different methods for estimating the circulation are compared to propose an accurate model of toroidal cavity oscillation. The phenomenon of a toroidal cavity impinging on a fixed wall is also investigated.

目的

研究涡环空化产生的环状空泡的振荡周期及其冲 击壁面溃灭的动态过程。

创新点

1. 通过实验方法,比较几种不同的速度环量计算 模型在环状空泡振荡控制方程中的适用性。2. 通 过声学方法,得到环状空泡在撞击壁面溃灭过程 中的频谱特征。

方法

1. 通过管内空泡膨胀产生高速射流;高速射流在 管口处形成涡环并发生涡环空化。2. 基于高速摄 像进行流体分析。

结论

1. 在管内空泡溃灭后,环状空泡以恒定速度沿管 的轴向运动,且其振荡周期几乎保持不变。2. 环 状空泡的振荡周期基本上满足规律: τ~ R0(ρP)0.5[ln(8/ε)]0.5。3. 在空泡振荡的最小直径 为特征直径;根据空心涡核模型,可以计算得到 最接近实验结果的速度环量值。4. 当空泡冲击壁 面时,空泡的环向直径将变大。5. 环向直径的最 大扩 张比α与其截面直径与环向直径的比ε相关: α~ε 0.25

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chahine, G.L., Genoux, P.F., 1983a. Collapse of a cavitating vortex ring. Journal of Fluids Engineering, 105(4):400–405. http://dx.doi.org/10.1115/1.3241018

    Article  MATH  Google Scholar 

  • Chahine, G.L., Genoux, P.F., 1983b. Static and dynamic quilibrium of a vaporous vortex-ring. Journal de Mecanique Theorique et Appliquee, 2(5):829–857 (in French).

    MATH  Google Scholar 

  • Chahine, G.L., Johnson, V.E., Lindenmuth, W.T., et al., 1985. The use of self-resonating cavitating water jets for underwater sound generation. The Journal of the Acoustical Society of America, 77(1):113–126. http://dx.doi.org/10.1121/1.392274

    Article  Google Scholar 

  • Dziedzic, M., Leutheusser, H.J., 1996. An experimental study of viscous vortex rings. Experiments in Fluids, 21(5): 315–324. http://dx.doi.org/10.1007/BF00189051

    Article  MATH  Google Scholar 

  • Genoux, P.F., Chahine, G.L., 1984. Collapse of a toroidal bubble near a solid wall. ASME Cavitation and Multiphase Flow Forum, p.69–72.

    Google Scholar 

  • Hu, L., Shen, Y.N., Chen, W.Y., et al., 2016a. Experimental investigation on submerged gas-liquid mixture injection into water through a micro-channel. International Journal of Multiphase Flow, 83:39–50. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.03.012

    Article  Google Scholar 

  • Hu, L., Liu, Q., Chen, W.Y., et al., 2016b. Normalizing study on the characteristic size of the stable cavity induced by a gas-jet penetrating into a liquid sheet. Experimental Thermal and Fluid Science, 70:228–235. http://dx.doi.org/10.1016/j.expthermflusci.2015.09.017

    Article  Google Scholar 

  • Jiang, L., Ge, H., Feng, C.L., et al., 2015. Numerical simulation of underwater explosion bubble with a refined interface treatment. Science China Physics, Mechanics & Astronomy, 58(4):1–10. http://dx.doi.org/10.1007/s11433-014-5616-9

    Article  Google Scholar 

  • Johnson, V. E. Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984a. Cavitating and structured jets for mechanical bits to increase drilling rate—part I: theory and concepts. Journal of Energy Resources Technology, 106(2):282–288. http://dx.doi.org/10.1115/1.3231053

    Article  Google Scholar 

  • Johnson, V. E. Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984b. Cavitating and structured jets for mechanical bits to increase drilling rate—part II: experimental results. Journal of Energy Resources Technology, 106(2):289–294. http://dx.doi.org/10.1115/1.3231054

    Article  Google Scholar 

  • Lauterborn, W., Kurz, T., 2010. Physics of bubble oscillations. Reports on Progress in Physics, 73(10):106501. http://dx.doi.org/10.1088/0034-4885/73/10/106501

    Article  Google Scholar 

  • Shariff, K., Leonard, A., 1992. Vortex rings. Annual Review of Fluid Mechanics, 24(1):235–279. http://dx.doi.org/10.1146/annurev.fl.24.010192.001315

    Article  MathSciNet  MATH  Google Scholar 

  • Sullivan, I.S., Niemela, J.J., Hershberger, R.E., et al., 2008. Dynamics of thin vortex rings. Journal of Fluid Mechanics, 609:319–347. http://dx.doi.org/10.1017/S0022112008002292

    Article  MathSciNet  MATH  Google Scholar 

  • Teslenko, V.S., Drozhzhin, A.P., Medvedev, R.N., 2014. Pulsation of cavitating vortex rings in water. Technical Physics Letters, 40(11):1021–1023. http://dx.doi.org/10.1134/S1063785014110297

    Article  Google Scholar 

  • Walker, J.D.A., Smith, C.R., Doligalski, T.L., et al., 1987. The impact of a vortex ring on a wall. Journal of Fluid Mechanics, 181:99–140. http://dx.doi.org/10.1017/S0022112087002027

    Article  Google Scholar 

  • Wang, Q.X., 2014. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. Journal of Fluid Mechanics, 745:509–536. http://dx.doi.org/10.1017/jfm.2014.105

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, M., Ji, C., Zou, J., et al., 2014. Particle removal by a single cavitation bubble. Science China Physics, Mechanics and Astronomy, 57(4):668–673. http://dx.doi.org/10.1007/s11433-013-5192-4

    Article  Google Scholar 

  • Xu, Y., Feng, L.H., Wang, J.J., 2013. Experimental investigation of a synthetic jet impinging on a fixed wall. Experiments in Fluids, 54:1512. http://dx.doi.org/10.1007/s00348-013-1512-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zou.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51475415 and 51405429), the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (No. LR15E050001), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51521064)

ORCID: Jun ZOU, http://orcid.org/0000-0003-2443-3516

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Lin, FY. & Zou, J. Experimental investigation of vortex-ring cavitation. J. Zhejiang Univ. Sci. A 18, 545–552 (2017). https://doi.org/10.1631/jzus.A1600537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600537

Keywords

CLC number

关键词

Navigation