Skip to main content
Log in

Simulation methodology development for rotating blade containment analysis

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment tests are time-consuming and incur significant costs; thus, developing a short-period and low-cost numerical method is warranted. Using explicit nonlinear dynamic finite element analysis software, the present study numerically investigated the high-speed impact process for simulated blade containment tests which were carried out on high-speed spin testing facility. A number of simulations were conducted using finite element models with different mesh sizes and different values of both the contact penalty factor and the friction coefficient. Detailed comparisons between the experimental and numerical results reveal that the mesh size and the friction coefficient have a considerable impact on the results produced. It is shown that a finer mesh will predict lower containment capability of the case, which is closer to the test data. A larger value of the friction coefficient also predicts lower containment capability. However, the contact penalty factor has little effect on the simulation results if it is large enough to avoid false penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambur, D.R., Jaunky, N., Lawson, R.E., Knight, N.F.Jr, 2001. Numerical simulations for high-energy impact of thin plates. International Journal of Impact Engineering, 25(7):683–702. [doi:10.1016/S0734-743X(00)00073-7]

    Article  Google Scholar 

  • Borvik, T., Hopperstad, O.S., Berstad, T., Langseth, M., 2002. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses Part II: numerical simulations. International Journal of Impact Engineering, 27(1):37–64. [doi:10.1016/S0734-743X(01)00035-5]

    Article  Google Scholar 

  • Carney, K.S., Lawrence, C., Carney, D.V., 2002. Aircraft Engine Blade-Out Dynamics. 7th International LS-DYNA Users Conference, Dearborn, USA. LSTC, California, USA, p.14–17.

    Google Scholar 

  • Chen, G., Chen, Z.F., Tao, J.L., Niu, W., Zhang, Q.P., Huang, X.C., 2005. Investigation and validation on plastic constitutive parameters of 45 steel. Explosion and Shock Waves, 25(5):451–456 (in Chinese).

    Google Scholar 

  • Chen, G., Chen, Z.F., Xu, W.F., Chen, Y.M., Huang, X.C., 2007. Investigation on the J-C ductile fracture parameters of 45 steel. Explosion and Shock Waves, 27(2):131–135 (in Chinese).

    Google Scholar 

  • Cosme, N., Chevrolet, D., Bonini, J., Peseux, B., Cartraud, P., 2002. Prediction of Engine Loads and Damages Due to Fan Blade-Off Event. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, USA. AIAA, Virginia, USA, Report No. AIAA-2002-1666.

  • Dey, S., Borvik, T., Hopperstada, O.S., Langseth, M., 2007. On the influence of constitutive relation in projectile impact of steel plates. International Journal of Impact Engineering, 34(3):464–486. [doi:10.1016/j.ijimpeng.2005.10.003]

    Article  Google Scholar 

  • Fan, Z.Q., Gao, D.P., Qin, Z.X., Jiang, T., 2006. Experimental study of 20# steel under tensile impact. Gas Turbine Experiment and Research, 19(4):35–51 (in Chinese).

    Google Scholar 

  • Goldsmith, W., 1999. Review: Non-ideal projectile impact on targets. International Journal of Impact Engineering, 22(2–3):95–395. [doi:10.1016/S0734-743X(98)00031-1]

    Article  Google Scholar 

  • Hallquist, J.O., 2006. LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, California, USA.

    Google Scholar 

  • He, Q., Xuan, H.J., Liu, L.L., Hong, W.R., Wu, R.R., 2012. Perforation of aero-engine fan casing by a single rotating blade. Aerospace Science and Technology, in press. [doi:10.1016/j.ast.2012.01.010]

  • Heidari, M., Carlson, D.L., Sinha, S., Sadeghi, R., Heydari, C., Bayoumi, H., Son, J., 2008. An Efficient Multi-Disciplinary Simulation of Engine Fan-Blade out Event Using MD Nastran. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, USA. AIAA, Virginia, USA, Report No. AIAA-2008-2333.

    Google Scholar 

  • Jain, R., 2010. Prediction of Transient Loads and Perforation of Engine Casing During Blade-Off Event of Fan Rotor Assembly. Proceedings of the IMPLAST Conference, Providence, USA.

  • Johnson, G.R., Cook, W.H., 1983. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Proceedings of the Seventh International Symposium on Ballistics, Hague, the Netherlands, p.541–547.

  • Johnson, G.R., Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1):31–48. [doi:10.1016/0013-7944(85)90052-9]

    Article  Google Scholar 

  • Knight, N.F.Jr, Jaunky, N., Lawson, R.E., Ambur, D.R., 2000. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA. Finite Elements in Analysis and Design, 36(2):99–133. [doi:10.1016/S0168-874X(00)00011-1]

    Article  MATH  Google Scholar 

  • Li, J.J., Xuan, H.J., Liao, L.F., Hong, W.R., Wu, R.R., 2009. Penetration of disk fragments following impact on thin plate. Journal of Zhejiang University-SCIENCE A, 10(5):677–684. [doi:10.1631/jzus.A0820746]

    Article  Google Scholar 

  • Morris, A.J., Vignjevic, R., 1997. Consistent finite element structural analysis and error control. Computer Methods in Applied Mechanics and Engineering, 140(1-2):87–108. [doi:10.1016/S0045-7825(96)01005-5]

    Article  MATH  Google Scholar 

  • Ravid, M., Bodner, S.R., 1983. Dynamic perforation of viscoplastic plates by rigid projectiles. International Journal of Engineering Science, 21(6):577–591. [doi:10.1016/0020-7225(83)90105-2]

    Article  Google Scholar 

  • Sarkar, S., Atluri, S.N., 1996. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure. Finite Elements in Analysis and Design, 23(2–4):211–223. [doi:10.1016/S0168-874X(96)80008-4]

    Article  MATH  Google Scholar 

  • Scheffler, D.R., Zukas, J.A., 2000. Practical aspects of numerical simulation of dynamic events: material interfaces. International Journal of Impact Engineering, 24(8): 821–842. [doi:10.1016/S0734-743X(00)00003-8]

    Article  Google Scholar 

  • Shmotin, Y.N., Gabov, D.V., 2006. Numerical Analysis of Aircraft Engine Fan Blade-Out. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, California, USA. AIAA, Virginia, USA, Report No. AIAA-2006-4620.

  • Sinha, S.K., Dorbala, S., 2009. Dynamic loads in the fan containment structure of a turbofan engine. Journal of Aerospace Engineering, 22(3):260–269. [doi:10.1061/(ASCE)0893-1321(2009)22:3(260)]

    Article  Google Scholar 

  • Stallone, M.J., Gallardo, V., Storace, A.F., Bach, L.J., Black, G., Gaffney, E.F., 1983. Blade loss transient dynamic analysis of turbomachinery. AIAA Journal, 21(8):1134–1138. [doi:10.2514/3.8216]

    Article  Google Scholar 

  • Teng, X., Wierzbicki, T., 2006. Evaluation of six fracture models in high velocity perforation. Engineering Fracture Mechanics, 73(12):1653–1678. [doi:10.1016/j.engfracmech.2006.01.009]

    Article  Google Scholar 

  • Wierzbicki, T., Bao, Y., Lee, Y., Bai, Y., 2005. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences, 47(4–5):719–743. [doi:10.1016/j.ijmecsci.2005.03.003]

    Article  Google Scholar 

  • Xuan, H.J., Wu, R.R., 2006. Aeroengine turbine blade containment tests using high-speed rotor spin testing facility. Aerospace Science and Technology, 10(6):501–508. [doi:10.1016/j.ast.2006.04.006]

    Article  Google Scholar 

  • Yu, C.L., Chen, Z.P., Wang, J., Yan, S.J, Yang, L.C., 2012. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(2):79–90. [doi:10.1631/jzus.A1100196]

    Article  Google Scholar 

  • Zukas, J.A., 1990. High Velocity Impact Dynamics. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Zukas, J.A., Scheffler, D.R., 2000. Practical aspects of numerical simulations of dynamic events: effects of meshing. International Journal of Impact Engineering, 24(9): 925–945. [doi:10.1016/S0734-743X(00)00012-9]

    Article  Google Scholar 

Recommended reading

  • Li, Q., Liu, S.L., Zheng, S.Y., 2010. Rate-dependent constitutive model of poly(ethylene terephthalate) for dynamic analysis. Journal of Zhejiang University-SCIENCE A (Applied Phsysics & Engineering), 11(10): 811–816. [doi:10.1631/jzus.A1000182]

    Article  Google Scholar 

  • Xu, W.F., Huang, X.C., Hao, Z.M., Wang, Y., Xia, Y.M., 2010. Effect of the geometric shapes of specimens on impact tensile tests. Journal of Zhejiang University-SCIENCE A (Applied Phsysics & Engineering), 11(10):817–821. [doi:10.1631/jzus.A1000139]

    Article  Google Scholar 

  • Li, J.J., Xuan, H.J., Liao, L.F., Hong, W.R., Wu, R.R., 2009. Penetration of disk fragments following impact on thin plate. Journal of Zhejiang University-SCIENCE A, 10(5): 677–684. [doi:10.1631/jzus.A0820746]

    Article  Google Scholar 

  • Zhang, T., Liu T.G., Zhao, Y., Luo, J.Z., 2004. Nonlinear dynamic buckling of stiffened plates under in-plane impact load. Journal of Zhejiang University-SCIENCE, 5(5):609–617. [doi:10.1631/jzus.2004.0609]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-jun Xuan.

Additional information

Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y1090245), and the Chinese Aviation Propulsion Technology Development Program (No. APTD-11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Xuan, Hj., Liao, Lf. et al. Simulation methodology development for rotating blade containment analysis. J. Zhejiang Univ. Sci. A 13, 239–259 (2012). https://doi.org/10.1631/jzus.A1100294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1100294

Key words

CLC number

Navigation