Skip to main content
Log in

Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We investigated migration of pollutant at the base of the Suzhou landfill after it had been operated for 13 years. The investigation was carried out by performing chemical analyses on the soil samples taken from the silty clay deposit. Concentrations of chloride, chemical oxygen demand (COD) and the heavy metals in the soil samples were determined using the standard methods. The experimental data showed that the maximum migration depth of chloride was more than 10 m, while the maximum migration depth of COD varied between 1 and 3.5 m. It is believed that the difference is attributed to the variation in diffusion rate and leachate-soil interaction. The chloride profiles also indicated that advection may be the dominant contaminant transport mechanism at this site. The total contents of Cu, Pb and Cr are very close to the background levels and the concentration values of these metals mainly are lower than the threshold values specified by the Chinese soil quality standard and the European one. The water-extractable concentrations of COD in the surface of the silty clay generally exceed the limit value specified by the Chinese standard. The concentrations of copper and chromium in pore water are 1∼2 orders of magnitude less than the total concentrations of these heavy metals within the soils, implying that heavy metals are mainly adsorbed by the soil particles. Finally, remediation methods were suggested for this landfill site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahel, M., Mikac, N., Cosovic, B., Prohic, E., Soukup, V., 1998. The impact of contamination from a municipal solid waste landfill (Zagreb, Croatia) on underlying soil. Water Science and Technology, 37(8):203–210. [doi:10.1016/S0273-1223(98)00260-1]

    Article  Google Scholar 

  • Bonaparte, R., Daniel, D., Koerner, R.M., 2002. Assessment and Recommendations for Improving the Performance of Waste Containment Systems. EPA Report, Co-operative Agreement Number CR-821448-01-0.

  • Bruder-Hubscher, V., Lagarde, F., Leroy, M.J.F., Coughanowr, C., Enguehard, F., 2002. Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Analytica Chimica Acta, 451(2):285–295. [doi:10.1016/S0003-2670(01)01403-9]

    Article  Google Scholar 

  • Chen, P.H., Wang, C.Y., 1997. Investigation into municipal waste leachate in the unsaturated zone of the red soil. Environment International, 23(2):237–245. [doi:10.1016/S0160-4120(97)00010-X]

    Article  Google Scholar 

  • Chen, Y.M., Xie, H.J., Ke, H., Tang, X.W., 2006. Analytical solution of contaminant diffusion through multilayered media. Chinese Journal of Geotechnical Engineering, 28:521–524 (in Chinese).

    Google Scholar 

  • Christensen, T.H., Kjeidsen, P.L., Bjerg, D.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H., Heron, G., 2001. Biochemistry of landfill leachate plumes. Applied Geochemistry, 16(7–8):659–718. [doi:10.1016/S0883-2927(00)00082-2]

    Article  Google Scholar 

  • Crooks, V.E., Quigley, R.M., 1984. Saline leachate migration through clay: a comparative laboratory and field investigation. Canadian Geotechnical Journal, 21:349–362.

    Article  Google Scholar 

  • Du, Y.J., Hayashi, S., Xu, Y.F., 2004. Some factors controlling the adsorption of potassium ions on clayey soils. Applied Clay Science, 27(3–4):209–213. [doi:10.1016/j.clay.2004.06.003]

    Article  Google Scholar 

  • Du, Y.J., Hayashi, S., Liu, S.Y., 2005. Experimental study of migration of potassium ion through a two-layer soil system. Environmental Geology, 48(8):1096–1106. [doi:10.1007/s00254-005-0050-y]

    Article  Google Scholar 

  • Freyssinet, P., Piantone, M., Azaroual, Y.B., Clozel-Leloup, Y.I., Guyonnet, D., Baubron, J.C., 2002. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Management, 22(2):159–172. [doi:10.1016/S0956-053X(01)00065-4]

    Article  Google Scholar 

  • Goodall, D.C., Quigley, R.M., 1977. Pollutant migration from sanitary landfill sites near Sarnia, Ontario. Canadian Geotechnical Journal, 14:223–236.

    Article  Google Scholar 

  • Helma, C., Mersch-Sundermann, V., Houk, V.S., Glasbrenner, U., Klein, C., Wenquing, L., Kassie, F., Schulte-Hermann, R., Knasmiller, S., 1996. Compartive evaluation of four bacterial assays for the detection of genotoxic effects in the dissolved water phases of aqueous matrices. Environmental Science and Technology, 30(3):897–907. [doi:10.1021/es950355w]

    Article  Google Scholar 

  • Hrapovic, L., Rowe, R.K., 2002. Intrinsic degradation of volatile fatty acids in laboratory compacted clayey soil. Journal of Contaminant Hydrology, 58(3–4):221–242. [doi:10.1016/S0169-7722(02)00038-4]

    Article  Google Scholar 

  • Hu, M.Y., Chen, Y.M., 2001. Engineering aspects of landfilling municipal solid waste. Journal of Zhejiang University SCIENCE, 2:34–40.

    Article  Google Scholar 

  • Jensen, D.L., Ledin, A., Christensen, T.H., 1999. Speciation of heavy metals in landfill-leachate polluted groundwater. Water Research, 33(11):2642–2650. [doi:10.1016/S0043-1354(98)00486-2]

    Article  Google Scholar 

  • Johnson, R.L., Cherry, J.A., Pankow, J.F., 1989. Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites. Environmental Science and Technology, 23(3):340–349. [doi:10.1021/es00180a012]

    Article  Google Scholar 

  • Karthikeyan, O.P., Swati, M., Nagendran, R., Joseph, K., 2007. Performance of bioreactor landfill with waste mined from a dumpsite. Environmental Monitoring and Assessment, 135(1–3):141–151. [doi:10.1007/s10661-007-9709-z]

    Article  Google Scholar 

  • King, K.S., Quigely, R.M., Fernandez, F., Reades, D.W., Bacopoulos, A., 1993. Hydraulic conductivity and diffusion monitoring of the Keele Valley Landfill liners, Maple, Ontario. Canadian Geotechnical Journal, 30:124–134.

    Article  Google Scholar 

  • Kjeldsen, P., 1986. Attenuation of Landfill Leachate in Soil and Aquifer Material. PhD Thesis, Technical University of Denmark.

  • Kruempelbeck, I., Ehrig, H.J., 1999. Long Term Behavior of Municipal Solid Waste Landfills in Germany. Proceedings of the 7th International Landfill Symposium, S. Margherita di Pula, Gagliari, Italy, p.27–36.

  • Kugler, H., Ottner, F., Froeschl, H., Adamcova, R., Schwaighofer, B., 2002. Retention of inorganic pollutants in clayey base sealings of municipal landfills. Applied Clay Science, 21(1–2):45–48. [doi:10.1016/S0169-1317(01)00091-6]

    Article  Google Scholar 

  • Lake, C.B., Rowe, R.K., 2005. The 14-year performance of a compacted clay liner used as a part of a composite liner system for a leachate lagoon. Geotechnical and Geological Engineering, 23(6):657–678. [doi:10.1007/s10706-004-8815-8]

    Article  Google Scholar 

  • Marzougui, A, Mammou, A.B., 2006. Impact of the dumping site on the environment: Case of the Henchir EI Yahoudia Site, Tunis, Tunisia. Comptes Rendus Geosciences, 338(16):1176–1183. [doi:10.1016/j.crte.2006.09.020]

    Article  Google Scholar 

  • Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. The Use of Selective Extraction Procedures for Soil Remediation. Proceedings of International Symposium on Suction, Swelling, Permeability and Structure of Clays, Balkema, Rotterdam, p.377–384.

  • Munro, I.R.P., MacQuarrie, K.T.B., Valsangkar, A.J., Kan, K.T., 1997. Migration of landfill leachate into a shallow clayey till in southern New Brunswick: A field and modeling investigation. Canadian Geotechnical Journal, 34(2):204–219. [doi:10.1139/cgj-34-2-204]

    Article  Google Scholar 

  • NSPRC (National Specifications of the People’s Republic of China), 1989. Water Quality—Determination of the Chemical Oxygen Demand—Dichromate Method. GB11914-89 (in Chinese).

  • NSPRC (National Specifications of the People’s Republic of China), 1995. Environmental Quality Specifications for Soils. GB 15618-1995 (in Chinese).

  • NSPRC (National specifications of the People’s Republic of China), 1997a. Soil Quality—Determination of Copper, Zinc—Flame Atomic Absorption Spectrophotometry. GB/T 17138-1997 (in Chinese).

  • NSPRC (National Specifications of the People’s Republic of China), 1997b. Soil Quality—Determination of Lead, Cadmium—Graphite Furnace Atomic Absorption Spetrophotometry. GB/T 17141-1997 (in Chinese).

  • NSPRC (National Specifications of the People’s Republic of China), 1997c. Test Method Specification for Leaching Toxicity of Solid Wastes—Horizontal Vibration Extraction Procedure. GB 5086.2-1997 (in Chinese).

  • Ohtsubo, M., Egashira, K., Kashima, K., 1995. Depositional and post-depositional geochemistry, and its correction with the geotechnical properties of marine clays in Ariake Bay, Japan. Geotechnique, 45:509–523.

    Article  Google Scholar 

  • PSEPPRC (Profession Standard of Environmental Protection of People’s Republic of China), 2005. Technical Specification of Solid Waste Cleaning for Reservoir Bed of the Three Gorges on the Yangtze River. HJ 85-2005 (in Chinese).

  • Rowe, R.K., Quigley, R.M., Brachman, R.W.I., Booker, J.R., 2004. Barrier Systems for Waste Disposal Facilities. E&FN Spon, London.

    Google Scholar 

  • Schrab, G.E., Brown, K.W., Donnelly, K.C., 1993. Acute and genetic toxicity of municipal landfill leachate. Water Air and Soil Pollution, 69:99–112.

    Article  Google Scholar 

  • Sharholy, M., Ahmad, K., Mahmood, G., Trivedi, R.C., 2008. Municipal solid waste management in Indian cities—A review. Waste Management, 28(2):457–467. [doi:10.1016/j.wasman.2007.02.008]

    Article  Google Scholar 

  • Swati, M., Karthikeyan, O.P., Joseph, K., Nagendran, R., 2007. Landfill bioreactor: A biotechnological solution for waste management. Journal of Science & Industrial Research, 66:670–674.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency), 1993. Solid Waste Disposal Facility Criteria—Technical Manual, EPA530-R-93-017.

  • Yanful, E.K., Quigley, R.M., Nesbitt, H.W., 1988. Heavy metal migration at a landfill site, Sarnia, Ontario, Canada—2: metal partitioning and geotechnical implications. Applied Geochemistry, 3(6):623–629. [doi:10.1016/0883-2927(88)90094-7]

    Article  Google Scholar 

  • Yong, R.N., 2001. Geoenvironmental Engineering: Contaminated Soil, Pollutant Fate, and Mitigation. CRC Press, New York.

    Google Scholar 

  • Zhan, L.T., Chen, Y.M., Lin, W.A., 2008. Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97(3–4):97–111. [doi:10.1016/j.enggeo.2007.11.006]

    Article  Google Scholar 

  • Zhang, P., Wu, Z.C., 2005. Municipal sludge as landfill barrier material. Journal of Environmental Sciences, 17:474–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-min Chen.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50538080), and the National Science Fund for Distinguished Young Scholars (No. 50425825), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Hj., Chen, Ym., Zhan, Lt. et al. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system. J. Zhejiang Univ. Sci. A 10, 439–449 (2009). https://doi.org/10.1631/jzus.A0820299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820299

Key words

CLC number

Navigation