Skip to main content
Log in

A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

To extract the maximum power from a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array must be tracked closely. The non-linear and time-variant characteristics of the PV array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP for traditional control strategies. We propose a fuzzy neural network controller (FNNC), which combines the reasoning capability of fuzzy logical systems and the learning capability of neural networks, to track the MPP. With a derived learning algorithm, the parameters of the FNNC are updated adaptively. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the FNNC. Simulation results show that the proposed control algorithm provides much better tracking performance compared with the fuzzy logic control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altas, I.H., Sharaf, A.M., 2008. A novel maximum power fuzzy logic controller for photovoltaic solar energy systems. Renewable Energy, 33(3):388–399. [doi:10.1016/j.renene.2007.03.002]

    Article  Google Scholar 

  • Brambilla, A., 1999. New Approach to Photovoltaic Arrays Maximum Power Point Tracking. 30th Annual IEEE Power Electronics Specialists Conf., South Carolina, USA, p.632–637.

  • Das, D., Esmaili, R., Xu, L., Nichols, D., 2005. An Optimal Design of a Grid Connected Hybrid Wind/Photovoltaic/Fuel Cell System for Distributed Energy Production. 32nd Annual Conf. of the IEEE Industrial Electronics Society, Paris, France, p.2499–2504.

  • Hiyama, T., Kouzuma, S., Imakubo, T., Ortmeyer, T.H., 1995. Evaluation of neural network based real time maximum power tracking controller for PV system. IEEE Trans. Energy Conv., 10(3):543–548. [doi:10.1109/60.464880]

    Article  Google Scholar 

  • Huang, S.J., Huang, K.S., Chiou, K.C., 2003. Development and application of a novel radial basis function sliding mode controller. Mechatronics, 13(4):313–329. [doi:10. 1016/S0957-4158(01)00050-2]

    Article  Google Scholar 

  • Kazimierczuk, M.K., Starman, L.A., 1999. Dynamic performance of PWM DC-DC boost converter with input voltage feedforward control. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 46(12):1473–1481. [doi:10.1109/81.809549]

    Article  Google Scholar 

  • Lee, C.H., Teng, C.C., 2000. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst., 8(4):349–366. [doi:10.1109/91.868943]

    Article  Google Scholar 

  • Lin, F.J., Lin, C.H., 2004. A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller. IEEE Trans. Energy Conv., 19(1):66–72. [doi:10.1109/TEC.2003.821835]

    Article  Google Scholar 

  • Lin, F.J., Wai, R.J., 2002. Adaptive fuzzy-neural-network control for induction spindle motor drive. IEEE Tran. Energy Conv., 17(4):507–513. [doi:10.1109/TEC.2002.805225]

    Article  Google Scholar 

  • Mukerjee, A.K., Dasgupta, N., 2007. DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renewable Energy, 32(4):587–592. [doi:10.1016/j.renene.2006.02.010]

    Article  Google Scholar 

  • Patcharaprakiti, N., Premrudeepreechacharn, S., Sriuthaisiriwong, Y., 2005. Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system. Renewable Energy, 30(11):1771–1788. [doi:10.1016/j.renene.2004.11.018]

    Article  Google Scholar 

  • Santos, J.L., Antunes, F., Chehab, A., Cruz, C., 2006. A maximum power point tracker for PV systems using a high performance boost converter. Solar Energy, 80(7):772–778. [doi:10.1016/j.solener.2005.06.014]

    Article  Google Scholar 

  • Shtessel, Y.B., Zinober, A.S.I., Shkolnikov, I.A., 2003. Sliding mode control of boost and buck-boost power converters using method of stable system centre. Automatica, 39(6):1061–1067. [doi:10.1016/S0005-1098(03)00068-2]

    Article  MathSciNet  MATH  Google Scholar 

  • Swiegers, W., Enslin, J.H.R., 1998. An Integrated Maximum Power Point Tracker for Photovoltaic Panels. Proc. IEEE Int. Symp. on Industrial Electronics, Pretoria, South Africa, p.40–44.

  • Torres, A.M., Antunes, F.L.M., 1998. An Artificial Neural Network-based Real Time Maximum Power Tracking Controller for Connecting a PV System to the Grid. 24th Annual Conf. of the IEEE Industrial Electronics Society, Aachen, Germany, p.554–558.

  • Valenciaga, F., Puleston, P.F., Battaiotto, P.E., 2001. Power control of a photovoltaic array in a hybrid electric generation system using sliding mode techniques. IEE Proc.- Control Theory Appl., 148(6):448–455. [doi:10.1049/ip-cta:20010785]

    Article  Google Scholar 

  • Xiao, W., Dunford, W.G., Capel, A., 2004. A Novel Modeling Method for Photovoltaic Cells. IEEE Power Electronics Specialists Conf., Aachen, Germany, p.1950–1956.

  • Xiao, W., Dunford, W.G., Palmer, P.R., Capel, A., 2007a. Regulation of photovoltaic voltage. IEEE Trans. Ind. Electron., 54(3):1365–1374. [doi:10.1109/TIE.2007.893059]

    Article  Google Scholar 

  • Xiao, W., Ozog, N., Dunford, W.G., 2007b. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron., 54(3):1696–1704. [doi:10. 1109/TIE.2007.894732]

    Article  Google Scholar 

  • Zhong, Z.D., Huo, H.B., Zhu, X.J., 2008. Adaptive maximum power point tracking control of fuel cell power plants. J. Power Sources, 176:259–269. [doi:10.1016/j.jpowsour.2007.10.080]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-hua Li.

Additional information

Project (No. 20576071) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ch., Zhu, Xj., Cao, Gy. et al. A maximum power point tracker for photovoltaic energy systems based on fuzzy neural networks. J. Zhejiang Univ. Sci. A 10, 263–270 (2009). https://doi.org/10.1631/jzus.A0820128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820128

Key words

CLC number

Navigation