Skip to main content
Log in

Actin-based dynamics during spermatogenesis and its significance

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Actin can be found in all kinds of eukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and, at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou-Haila, A., Tulsiani, D.R., 2000. Mammalian sperm acrosome: formation, contents, and function. Arch. Biochem. Biophys., 379(2):173–182. [doi:10.1006/abbi.2000.1880]

    Article  PubMed  CAS  Google Scholar 

  • Adema, C.M., 2002. Comparative study of cytoplasmic actin DNA sequences from six species of Planorbidae (Gastropoda: Basommatophora). J. Moll. Stud., 68(1): 17–23. [doi:10.1093/mollus/68.1.17]

    Article  Google Scholar 

  • Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994. Molecular Biology of the Cell, 3rd Ed. Garland Publishing Inc., New York and London, p.787–1034.

    Google Scholar 

  • Anahara, R., Toyama, Y., Mori, C., 2004. Flutamide induces ultrastructural changes in spermatids and the ectoplasmic specialization between the Sertoli cell and spermatids in mouse testes. Reprod. Toxicol., 18(4):589–596. [doi:10.1016/j.reprotox.2004.02.011]

    PubMed  CAS  Google Scholar 

  • Anahara, R., Toyama, Y., Maekawa, M., Yoshida, M., Kai, M., Ishino, F., Toshimori, K., Mori, C., 2006a. Anti-estrogen ICI 182.780 and anti-androgen flutamide induce tyrosine phosphorylation of cortactin in the ectoplasmic specialization between the Sertoli cell and spermatids in the mouse testis. Biochem. Biophys. Res. Commun., 346(1):276–280. [doi:10.1016/j.bbrc.2006.05.125]

    Article  PubMed  CAS  Google Scholar 

  • Anahara, R., Yoshida, M., Toyama, Y., Maekawa, M., Kai, M., Ishino, F., Toshimori, K., Mori, C., 2006b. Estrogen agonists, 17beta-estradiol, bisphenol A, and diethyl-stilbestrol, decrease cortactin expression in the mouse testis. Arch. Histol. Cytol., 69(2):101–107. [doi:10.1679/aohc.69.101]

    Article  PubMed  CAS  Google Scholar 

  • Ayscough, K.R., Winder, S.J., 2004. Two billion years of actin. EMBO Rep., 5(10):947–952. [doi:10.1038/sj.embor.7400252]

    Article  PubMed  CAS  Google Scholar 

  • Billadeau, D.D., Burkhardt, J.K., 2006. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic, 7(11):1451–1460. [doi:10.1111/j.1600-0854.2006.00491.x]

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, H., Cohen, G., Rubinstein, S., 2005. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction, 129(3):263–268. [doi:10.1530/rep.1.00269]

    Article  PubMed  CAS  Google Scholar 

  • Campa, F., Machuy, N., Klein, A., Rudel, T., 2006. A new interaction between Abi-1 and betaPIX involved in PDGF-activated actin cytoskeleton reorganisation. Cell Res., 16(9):759–770. [doi:10.1038/sj.cr.7310091]

    Article  PubMed  CAS  Google Scholar 

  • Cappuccinelli, P., 1987. Motility of Living Cells, Outline Studies in Biology. Science Press, Beijing, p.24–30 (in Chinese).

    Google Scholar 

  • Carraway, K.L., Carraway, C.A.C., 2000. Cytoskeleton: Signaling and Cell Regulation. Oxford University Press, New York, p.1–121.

    Google Scholar 

  • Cheng, C.Y., Mruk, D.D., 2002. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev., 82(4):825–874.

    PubMed  CAS  Google Scholar 

  • Cheng, C.Y., Mruk, D.D., Silvestrini, B., Bonanomi, M., Wong, C.H., Siu, M.K., Lee, N.P., Lui, W.Y., Mo, M.Y., 2005. AF-2364 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception, 72(4):251–261. [doi:10.1016/j.contraception.2005.03.008]

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri, J., Aleem, M., Padwal, V., Das Gupta, P., Souza, R.D., Pathak, S., Balasinor, N., Gill-Sharma, M.K., 2005. Effect of estradiol on expression of cytoskeletal proteins during spermatogenesis in testis of sexually mature rats. Indian J. Exp. Biol., 43(11):1068–1079.

    PubMed  CAS  Google Scholar 

  • Costa, M.L., Escaleira, R., Cataldo, A., Oliveira, F., Mermelstein, C.S., 2004. Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz. J. Med. Biol. Res., 37(12): 1819–1830. [doi:10.1590/S0100-879X2004001200007]

    Article  PubMed  CAS  Google Scholar 

  • Diez, S., Gerisch, G., Anderson, K., Muller-Taubenberger, A., Bretschneider, T., 2005. Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc. Natl. Acad. Sci. USA, 102(21):7601–7606. [doi:10.1073/pnas.0408546102]

    Article  PubMed  CAS  Google Scholar 

  • Fahrni, J.F., Bolivar, I., Berney, C., Nassonova, E., Smirnov, A., Pawlowski, J., 2003. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol. Biol. Evol., 20(11):1881–1886. [doi:10.1093/molbev/msg201]

    Article  PubMed  CAS  Google Scholar 

  • Fouquet, J., Kann, M., Soues, S., Melki, R., 2000. ARP1 in Golgi organisation and attachment of manchette microtubules to the nucleus during mammalian spermatogenesis. J. Cell Sci., 113(Pt 5):877–886.

    PubMed  CAS  Google Scholar 

  • Ghosh-Roy, A., Desai, B.S., Ray, K., 2005. Dynein light chain 1 regulates dynamin-mediated F-actin assembly during sperm individualization in Drosophila. Mol. Biol. Cell, 16(7):3107–3116. [doi:10.1091/mbc.E05-02-0103]

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S.F., 2000. Developmental Biology, 6th Ed. Sinauer Associates Inc., Sunderland, Massachusetts, p.185–216.

    Google Scholar 

  • Gilk, S.D., Raviv, Y., Hu, K., Murray, J.M., Beckers, C.J., Ward, G.E., 2006. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaph-thalene-1-azide. Eukaryot. Cell, 5(10):1622–1634. [doi:10.1128/EC.00114-06]

    Article  PubMed  CAS  Google Scholar 

  • Goley, E.D., Welch, M.D., 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol., 7(10):713–726. [doi:10.1038/nrm2026]

    Article  PubMed  CAS  Google Scholar 

  • Goley, E.D., Ohkawa, T., Mancuso, J., Woodruff, J.B., D’Alessio, J.A., Cande, W.Z., Volkman, L.E., Welch, M.D., 2006. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science, 314(5798):464–467. [doi:10.1126/science.1133348]

    Article  PubMed  CAS  Google Scholar 

  • Hirohashi, N., Vacquier, V.D., 2003. Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochem. Biophys. Res. Commun., 304(2):285–292. [doi:10.1016/S0006-291X(03)00587-4]

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori, S.E., Greenfield, N.J., Singh, A., 2007. Tropomyosin: regulator of actin filaments. Adv. Exp. Med. Biol., 592:87–97.

    PubMed  Google Scholar 

  • Howes, E.A., Hurst, S.M., Jones, R., 2001. Actin and actin-binding proteins in bovine spermatozoa: potential role in membrane remodeling and intracellular signaling during epididymal maturation and the acrosome reaction. J. Androl., 22(1):62–72.

    PubMed  CAS  Google Scholar 

  • J’egou, B., 1992. The Sertoli cell in vivo and in vitro. Cell Biol. Toxicol., 8(3):49–54. [doi:10.1007/BF00130510]

    Article  CAS  Google Scholar 

  • Kaksonen, M., Toret, C.P., Drubin, D.G., 2006. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 7(6):404–414. [doi:10.1038/nrm1940]

    Article  PubMed  CAS  Google Scholar 

  • Khatchadourian, K., Smith, C.E., Metzler, M., Gregory, M., Hayden, M.R., Cyr, D.G., Hermo, L., 2007. Structural abnormalities in spermatids together with reduced sperm counts and motility underlie the reproductive defect in HIP1−/− mice. Mol. Reprod. Dev., 74(3):341–359. [doi:10.1002/mrd.20564]

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A.L., Tres, L.L., 2004. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch. Histol. Cytol., 67(4):271–284. [doi:10.1679/aohc.67.271]

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A.L., Rivkin, E., Tres, L.L., 2003a. The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet. Genome Res., 103(3–4):337–344. [doi:10.1159/000076 822]

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A.L., Rivkin, E., Tres, L.L., 2003b. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol. Biol. Cell, 14(11):4628–4640. [doi:10.1091/mbc.E03-04-0226]

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum, A.L., Tres, L.L., Rivkin, E., Kang-Decker, N., van Deursen, J.M., 2004. The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b-containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol. Reprod., 70(5):1400–1410. [doi:10.1095/biolreprod.103.025346]

    Article  PubMed  CAS  Google Scholar 

  • Lee, N.P., Cheng, C.Y., 2004. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development? Hum. Reprod. Update, 10(4):349–369. [doi:10.1093/humupd/dmh026]

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, M.J., Sherer, N.M., Marks, C.B., Pypaert, M., Mothes, W., 2005. Actin-and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol., 170(2):317–325. [doi:10.1083/jcb.200503059]

    Article  PubMed  CAS  Google Scholar 

  • Liu, D.Y., Martic, M., Clarke, G.N., Dunlop, M.E., Baker, H.W., 1999. An important role of actin polymerization in the human zona pellucida-induced acrosome reaction. Mol. Hum. Reprod., 5(10):941–949. [doi:10.1093/molehr/5.10.941]

    Article  PubMed  CAS  Google Scholar 

  • Liu, D.Y., Martic, M., Clarke, G.N., Grkovic, I., Garrett, C., Dunlop, M.E., Baker, H.W., 2002. An anti-actin monoclonal antibody inhibits the zona pellucida-induced acrosome reaction and hyperactivated motility of human sperm. Mol. Hum. Reprod., 8(1):37–47. [doi:10.1093/molehr/8.1.37]

    Article  PubMed  CAS  Google Scholar 

  • Lora-Lamia, C., Castellani-Ceresa, L., Andreetta, F., Cotelli, F., Brivio, M., 1986. Localization and distribution of actin in mammalian sperm heads. J. Ultrastruct. Mol. Struct. Res., 96(1–3):12–21. [doi:10.1016/0889-1605(86)90003-0]

    Article  PubMed  CAS  Google Scholar 

  • Lui, W.Y., Mruk, D., Lee, W.M., Cheng, C.Y., 2003. Sertoli cell tight junction dynamics: their regulation during spermatogenesis. Biol. Reprod., 68(4):1087–1097. [doi:10.1095/biolreprod.102.010371]

    Article  PubMed  CAS  Google Scholar 

  • Luk, J.M., Lee, N.P., Shum, C.K., Lam, B.Y., Siu, A.F., Che, C.M., Tam, P.C., Cheung, A.N., Yang, Z.M., Lin, Y.N., Matzuk, M.M., Lee, K.F., Yeung, W.S., 2006. Acrosome-specific gene AEP1: identification, characterization and roles in spermatogenesis. J. Cell. Physiol., 209(3): 755–766. [doi:10.1002/jcp.20746]

    Article  PubMed  CAS  Google Scholar 

  • Ma, P., Wang, H., Guo, R., Ma, Q., Yu, Z., Jiang, Y., Ge, Y., Ma, J., Xue, S., Han, D., 2006. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol. Reprod. Dev., 73(6):774–783. [doi:10.1002/mrd.20468]

    Article  PubMed  CAS  Google Scholar 

  • Maier, B., Medrano, S., Sleight, S.B., Visconti, P.E., Scrable, H., 2003. Developmental association of the synaptic activity-regulated protein arc with the mouse acrosomal organelle and the sperm tail. Biol. Reprod., 68(1):67–76. [doi:10.1095/biolreprod.102.004143]

    Article  PubMed  CAS  Google Scholar 

  • Malacombe, M., Bader, M.F., Gasman, S., 2006. Exocytosis in neuroendocrine cells: new tasks for actin. Biochim. Biophys. Acta, 1763(11):1175–1183. [doi:10.1016/j.bbamcr.2006.09.004]

    Article  PubMed  CAS  Google Scholar 

  • Marston, D.J., Goldstein, B., 2006. Actin-based forces driving embryonic morphogenesis in Caenorhabditis elegans. Curr. Opin. Genet. Dev., 16(4):392–398. [doi:10.1016/j.gde.2006.06.002]

    Article  PubMed  CAS  Google Scholar 

  • Mruk, D.D., Cheng, C.Y., 2004a. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev., 25(5):747–806. [doi:10.1210/er.2003-0022]

    Article  PubMed  CAS  Google Scholar 

  • Mruk, D.D., Cheng, C.Y., 2004b. Cell-cell interactions at the ectoplasmic specialization in the testis. Trends. Endocrinol. Metab., 15(9):439–447. [doi:10.1016/j.tem.2004.09.009]

    Article  PubMed  CAS  Google Scholar 

  • Mruk, D.D., Lau, A.S., Conway, A.M., 2005. Crosstalk between Rab GTPases and cell junctions. Contraception, 72(4):280–290. [doi:10.1016/j.contraception.2005.03.013]

    Article  PubMed  CAS  Google Scholar 

  • Mruk, D.D., Wong, C.H., Silvestrini, B., Cheng, C.Y., 2006. A male contraceptive targeting germ cell adhesion. Nat. Med., 12(11):1323–1328. [doi:10.1038/nm1420]

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., Miller, K.G., 2003. A role for actin dynamics in individualization during spermatogenesis in Drosophila melanogaster. Development, 130(9):1805–1816. [doi:10.1242/dev.00406]

    Article  PubMed  CAS  Google Scholar 

  • Obermann, H., Raabe, I., Balvers, M., Brunswig, B., Schulze, W., Kirchhoff, C., 2005. Novel testis-expressed profilin IV associated with acrosome biogenesis and spermatid elongation. Mol. Hum. Reprod., 11(1):53–64. [doi:10.1093/molehr/gah132]

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, L., Stanton, P.G., Bartles, J.R., Robertson, D.M., 2000. Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol. Reprod., 63(1):99–108. [doi:10.1095/biolreprod63.1.99]

    Article  PubMed  CAS  Google Scholar 

  • Percipalle, P., Visa, N., 2006. Molecular functions of nuclear actin in transcription. J. Cell Biol., 172(7):967–971. [doi:10.1083/jcb.200512083]

    Article  PubMed  CAS  Google Scholar 

  • Robalo, J.I., Almada, V.C., Levy, A., Doadrio, I., 2007. Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol. Phylogenet. Evol., 42(2):362–372. [doi:10.1016/j.ympev.2006.07.003]

    Article  PubMed  CAS  Google Scholar 

  • Sahara, K., Kawamura, N., 2004. Roles of actin networks in peristaltic squeezing of sperm bundles in Bombyx mori. J. Morphol., 259(1):1–6. [doi:10.1002/jmor.10168]

    Article  PubMed  Google Scholar 

  • Sanders, S., Debuse, M., 2003. Endocrine & Reproductive Systems, 2nd Ed. Elsevier Science Ltd., London, p.149–156.

    Google Scholar 

  • Siu, M.K., Cheng, C.Y., 2004. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol. Reprod., 71(2):375–391. [doi:10.1095/biolreprod.104.028225]

    Article  PubMed  CAS  Google Scholar 

  • Spungin, B., Margalit, I., Breitbart, H., 1995. Sperm exocytosis reconstructed in a cell-free system: evidence for the involvement of phospholipase C and actin filaments in membrane fusion. J. Cell Sci., 108(Pt 6):2525–2535.

    PubMed  CAS  Google Scholar 

  • Stehn, J.R., Schevzov, G., O’Neill, G.M., Gunning, P.W., 2006. Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr. Cancer Drug Targets, 6(3):245–256. [doi:10.2174/156800906776842948]

    Article  PubMed  CAS  Google Scholar 

  • Stevens, J.M., Galyov, E.E., Stevens, M.P., 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol., 4(2):91–101. [doi:10.1038/nrmicro1320]

    Article  PubMed  CAS  Google Scholar 

  • Talbot, P., Kleve, M.G., 1978. Hamster sperm cross react with anti-actin. J. Exp. Zool., 204(1):131–136. [doi:10.1002/jez.1402040112]

    Article  PubMed  CAS  Google Scholar 

  • Toyama, Y., Hosoi, I., Ichikawa, S., Maruoka, M., Yashiro, E., Ito, H., Yuasa, S., 2001. Beta-estradiol 3-benzoate affects spermatogenesis in the adult mouse. Mol. Cell. Endocrinol., 178(1–2):161–168. [doi:10.1016/S0303-7207(01 00419-1]

    Article  PubMed  CAS  Google Scholar 

  • Toyama, Y., Suzuki-Toyota, F., Maekawa, M., Ito, C., Toshimori, K., 2004. Adverse effects of bisphenol A to spermiogenesis in mice and rats. Arch. Histol. Cytol., 67(4):373–381. [doi:10.1679/aohc.67.373]

    Article  PubMed  CAS  Google Scholar 

  • Virtanen, I., Badley, R.A., Paasivuo, R., Lehto, V.P., 1984. Distinct cytoskeletal domains revealed in sperm cells. J. Cell Biol., 99(3):1083–1091. [doi:10.1083/jcb.99.3.1083]

    Article  PubMed  CAS  Google Scholar 

  • Vogl, A.W., 1989. Distribution and function of organized concentrations of actin filaments in mammalian spermatogenic cells and Sertoli cells. Int. Rev. Cytol., 119: 1–56.

    Article  PubMed  CAS  Google Scholar 

  • Weis, W.I., Nelson, W.J., 2006. Re-solving the cadherin-catenin-actin conundrum. J. Biol. Chem., 281(47): 35593–35597. [doi:10.1074/jbc.R600027200]

    Article  PubMed  CAS  Google Scholar 

  • Wolski, K.M., Haller, E., Cameron, D.F., 2005. Cortactin and phagocytosis in isolated Sertoli cells. J. Negat. Results Biomed., 4(1):11. [doi:10.1186/1477-5751-4-11]

    Article  PubMed  Google Scholar 

  • Wolski, K.M., Mruk, D.D., Cameron, D.F., 2006. The Sertoli-spermatid junctional complex adhesion strength is affected in vitro by adjudin. J. Androl., 27(6):790–794. [doi:10.2164/jandrol.106.000422]

    Article  PubMed  CAS  Google Scholar 

  • Wong, C.H., Cheng, C.Y., 2005a. Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis: a review of recent data. Dev. Biol., 286(1):1–15. [doi:10.1016/j.ydbio.2005.08.001]

    Article  PubMed  CAS  Google Scholar 

  • Wong, C.H., Cheng, C.Y., 2005b. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr. Top. Dev. Biol., 71:263–296. [doi:10.1016/S0070-2153(05)71008-5]

    PubMed  CAS  Google Scholar 

  • Wong, C.H., Xia, W., Lee, N.P., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2005. Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes. Endocrinology, 146(3):1192–1204. [doi:10.1210/en.2004-1275]

    Article  PubMed  CAS  Google Scholar 

  • Xia, W., Wong, C.H., Lee, N.P., Lee, W.M., Cheng, C.Y., 2005. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J. Cell. Physiol., 205(1):141–157. [doi:10.1002/jcp.20377]

    Article  PubMed  CAS  Google Scholar 

  • Yan, H.H., Cheng, C.Y., 2005. Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl. Acad. Sci. USA, 102(33): 11722–11727. [doi:10.1073/pnas.0503855102]

    Article  PubMed  CAS  Google Scholar 

  • Yan, H.H., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2007. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays, 29(1):36–48. [doi:10.1002/bies.20513]

    Article  PubMed  CAS  Google Scholar 

  • Yang, W.X., Sperry, A.O., 2003. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol. Reprod., 69(5):1719–1729. [doi:10.1095/biolreprod.102.014878]

    Article  PubMed  CAS  Google Scholar 

  • Yao, R., Ito, C., Natsume, Y., Sugitani, Y., Yamanaka, H., Kuretake, S., Yanagida, K., Sato, A., Toshimori, K., Noda, T., 2002. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc. Natl. Acad. Sci. USA, 99(17): 11211–11216. [doi:10.1073/pnas.162027899]

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Ono, S., 2006. Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in Caenorhabditis elegans body wall muscle. Cell Motil. Cytoskeleton, 63(11):659–672. [doi:10.1002/cm.20152]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wan-xi.

Additional information

Project (No. 30671606) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Yang, Wx. Actin-based dynamics during spermatogenesis and its significance. J. Zhejiang Univ. - Sci. B 8, 498–506 (2007). https://doi.org/10.1631/jzus.2007.B0498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0498

Key words

CLC number

Navigation