Skip to main content
Log in

Galerkin method study on flow of Oldroyd-B fluids in curved circular cross-section pipes

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A Galerkin method was used to investigate steady, fully developed flow of Oldroyd-B fluids through curved pipes of circle cross-section. By using Galerkin method, large values of curvature ratio, Reynolds number and Weissenberg number can be discussed. The powers of the series of the Galerkin method in the present work are chosen carefully. Both effects of Reynolds number and Weissenberg number on axial velocity and stream function are discussed even for large values of the two non-dimensional parameters. It was discovered that the combined effect of large Reynolds number and Weissenberg number decreases the outward shifts of maximum axial velocity and maximum stream function. Axial normal stress of creeping flow is also studied here. The large Weissenberg number makes the stress concentration occur on the inner bend of the pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolinder, C.J., 1996. Curvilinear coordinates and physical components: an application to the problem of viscous flow and heat transfer in smoothly curved ducts. J. Appl. Mech., 63:985–989.

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen, P.J., Davies, A.R., Walters, K., 1991. On viscoelastic effects in swirling flows. J. Non-Newtonian Fluid Mech., 38(2–3):113–126. [doi:10.1016/0377-0257(91)83001-K]

    Article  MATH  Google Scholar 

  • Chen, H.J., Zhang, B.Z., Su, X.Y., 2003. Low frequency oscillatory flow in a rotating curved pipe. J. Zhejiang University SCIENCE, 4(4):407–414.

    Article  Google Scholar 

  • Clegg, D.B., Power, G., 1963. Flow of a Bingham fluid in a slightly curved tube. Appl. Sci. Res., 12:199–212.

    MATH  Google Scholar 

  • Das, B., 1992. Flow of a Bingham fluid in a slightly curved tube. Int. J. Engng. Sci., 30(9):1193–1207. [doi:10.1016/0020-7225(92)90067-Q]

    Article  MATH  Google Scholar 

  • Dean, R.W., 1927. Note on the motion of fluid in a curved pipe. Phil. Mag., 7(4):208–223.

    Article  MATH  Google Scholar 

  • Dean, R.W., 1928. The stream-line motion of fluid in a curved pipe. Phil. Mag., 7(5):673–695.

    Article  Google Scholar 

  • Fan, Y.R., Tanner, R.I., Phan-Thien, N., 2001. Fully developed viscous and viscoelastic flows in curved pipes. J. Fluid Mech., 440:327–357. [doi:10.1017/S0022112001004785]

    Article  MATH  Google Scholar 

  • Ito, H., 1969. Laminar flow in curved pipes. Z. Angew. Math. Mech., 49:653–662.

    Article  MATH  Google Scholar 

  • Jitchote, W., Robertson, A.M., 2000. Flow of second order fluids in curved pipes. J. Non-Newtonian Fluid Mech., 90(1):91–116. [doi:10.1016/S0377-0257(99)00070-1]

    Article  MATH  Google Scholar 

  • Jones, C.R., 1960. Flow of a non-Newtonian liquid in a curved pipe. Quart. J. Mech. Appl. Math., 13:428–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Nandakumar, K., Masliyah, H.J., 1982. Bifurcation in steady laminar flow through curved pipes. J. Fluid. Mech., 119:475–490. [doi:10.1017/S002211208200144X]

    Article  MATH  Google Scholar 

  • Robertson, A.M., Muller, S.J., 1996. Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section. J. Non-linear Mech., 31(1):1–20. [doi:10.1016/0020-7462(95)00040-2]

    Article  MATH  Google Scholar 

  • Sharma, H.G., Prakash, A., 1977. Flow of second-order fluid in a curved pipe. Indian J. Pure Appl. Math., 8:546–557.

    MathSciNet  MATH  Google Scholar 

  • Soh, W.Y., Berger, S.A., 1987. Fully developed flow in a curved pipe of arbitrary curvature ratio. International Journal for Numerical Methods in Fluids, 7(7):733–755. [doi:10.1002/fld.1650070705]

    Article  MATH  Google Scholar 

  • Thomas, A.H., Walters, K., 1963. On the flow of an elastico-viscous liquid in a curved pipe under a pressure gradient. J. Fluid Mech., 16(2):228–242. [doi:10.1017/S0022112063000719]

    Article  MathSciNet  MATH  Google Scholar 

  • Topakoglu, C.H., 1967. Steady laminar flows of an incompressible viscous fluid in curved pipes. J. Math. Mech., 16:1321–1337.

    MATH  Google Scholar 

  • Xue, L., 2002. Study on laminar flow in helical circular pipes with Galerkin method. Computers & Fluids, 31(1):113–129. [doi:10.1016/S0045-7930(00)00013-X]

    Article  MATH  Google Scholar 

  • Zhang, J.S., Zhang, B.Z., 2003. Dean equations extended to rotating helical pipe flow. J. Engrg. Mech., 129(7):823–829. [doi:10.1061/(ASCE)0733-9399(2003)129:7(823)]

    Article  Google Scholar 

  • Zhang, J.S., Zhang, B.Z., Chen, H.J., 2000. Flow in helical annular pipe. J. Engrg. Mech., 126(10):1040–1047. [doi:10.1061/(ASCE)0733-9399(2000)126:10(1040)]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 10272096) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Mk., Shen, Xr., Ma, Jf. et al. Galerkin method study on flow of Oldroyd-B fluids in curved circular cross-section pipes. J. Zhejiang Univ. - Sci. A 7 (Suppl 2), 263–270 (2006). https://doi.org/10.1631/jzus.2006.AS0263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.AS0263

Key words

CLC number

Navigation