Skip to main content
Log in

Dynamic modelling and robust current control of wind-turbine driven DFIG during external AC voltage dip

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant-Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carried out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anaya-Lara, O., Cartwright, P., Ekanayake, J.B., 2004. Electrical Stability of Large Wind Farms—Grid Connections and Modeling. Proc. 2004 AWEA Conference.

  • Conraths, H.J., 2001. Rotor Control Generator System for Wind Energy Applications. Proc. EPE2001. Graz, Australia.

  • Hansen, L.H., Helle, L., Blaabjerg, F., Rithite, E., Munk-Nielsen, S., Bindner, H., Sørensen, P., Bak-Jensen, B., 2001. Conceptual Survey of Generators and Power Electronics for Wind Turbines. Tech. Rep. Riso-R1205 (EN), Riso Nat. Lab., Roskilde, Demark.

    Google Scholar 

  • Harnefors, L., Nee, H.P., 1998. Model-based current control of AC machines using the internal model control method. IEEE Trans. Ind. Appl., 34(1):133–141. [doi:10.1109/28.658735]

    Article  Google Scholar 

  • Hu, J.B., He, Y.K., Liu, Q.H., 2005. Optimized active power reference based maximum wind energy tracking control strategy. Automation of Electric Power Systems, 29(24):32–38 (in Chinese).

    Google Scholar 

  • Morren, J., de Haan, S.W.H., 2005. Ridethough of wind turbines with doubly-fed induction generator during a volage dip. IEEE Transactions on Energy Conversion, 20(2):435–441. [doi:10.1109/TEC.2005.845526]

    Article  Google Scholar 

  • Muller, S., Deicke, M., de Doncker, R.W., 2002. Doubly fed induction generator system for wind turbines. IEEE Industry Application Magazine, 8(3):26–33. [doi:10.1109/2943.999610]

    Article  Google Scholar 

  • National Grid Transco, 2004. Appendix 1: Extracts from the Grid Code—Connection Conditions. Available at http://www.nationalgrid.com

  • Pena, R., Clare, J.C., Asher, G.M., 1996. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEEE Proceedings of Electric Power Applications, 143(3):231–241. [doi:10.1049/ip-epa:19960288]

    Article  Google Scholar 

  • Sun, T., Chen, Z., Blaabjerg, F., 2004. Voltage Recovery of Grid-connected Wind Turbines with DFIG after a Short-circuit Fault. 35th Annual IEEE Power Electronics Specialist Conference, p.1991–1997.

  • Sun, T., Chen, Z., Blaabjerg, F., 2005. Transient stability of DFIG wind turbines at an external short-circuit fault. Wind Energy, 8(3):345–360. [doi:10.1002/we.164]

    Article  Google Scholar 

  • Thomas, J.L., Poullain, S., Benchaib, A., 2001. Analysis of a Robust DC-bus Voltage Control System for a VSC-transmission Scheme. IEEE Proc. of the 7th International Conference on AC-DC Power Transmission. London, p.119–124.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No.50577056) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Jb., He, Yk. Dynamic modelling and robust current control of wind-turbine driven DFIG during external AC voltage dip. J. Zhejiang Univ. - Sci. A 7, 1757–1764 (2006). https://doi.org/10.1631/jzus.2006.A1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A1757

Key words

CLC number

Navigation