Skip to main content
Log in

Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ɛ model. The modelling of turbulence of compressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmetrical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ɛ model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ɛ model cannot capture the stabilizing effect of the swirl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlborn, B., Keller, J.U., Staudt, R., Treitz, G., Rebhan, E., 1994. Limits of temperature separation in a vortex tube. J. Physics D: Applied Physics, 27(3):480–488. [doi:10.1088/0022-3727/27/3/009]

    Article  Google Scholar 

  • Aljuwayhel, N.F., Nellis, G.F., Klein, S.A., 2005. Parametric and internal study of the vortex tube using a CFD model. International Journal of Refrigeration, 28(3):442–450. [doi:10.1016/j.ijrefrig.2004.04.004]

    Article  Google Scholar 

  • Amitani, T., Adachi, T., Kato, T., 1983. A study on temperature separation in a large vortex tube. Trans. JSME, 49:877–884.

    Article  Google Scholar 

  • Behera, U., Paul, P.J., Kasthurirengan, S., Karunanithi, R., Ram, S.N., Dinesh, K., Jacob, S., 2005. CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube. Int. J. Heat and Mass Transfer, 48(10):1961–1973. [doi:10.1016/j.ijheatmasstransfer.2004.12.046]

    Article  Google Scholar 

  • Frohlingsdorf, W., Unger, H., 1999. Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube. Int. J. Heat and Mass Transfer, 42(3):415–422. [doi:10.1016/S0017-9310(98)00191-4]

    Article  MATH  Google Scholar 

  • Gatski, T.B., 1996. Turbulent Flows: Model Equations and Solution Methodology. In: Peyret, R. (Ed.), Handbook of Computational Fluid Mechanics. Academic Press Ltd., London.

    Google Scholar 

  • Hilsch, R., 1947. The use of expansion of gases in a centrifugal field as a cooling process. Review of Scientific Instruments, 18(2):108–113. [doi:10.1063/1.1740893]

    Article  Google Scholar 

  • Nash, J.M., 1991. Vortex Expansion Devices for High Temperature Cryogenics. Proceedings of the Intersociety Energy Conversion Engineering Conference, 4:521–525.

    Google Scholar 

  • Negm, M.I.M., Serag, A.Z., Abdel Ghany, S.M., 1988. Performance characteristics of energy separation in double stage vortex tubes. Modelling, Simulation & Control B: Mechanical & Thermal Engineering, Materials & Resources, Chemistry, 14:21–32.

    Google Scholar 

  • Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Incorp., Washington DC.

    MATH  Google Scholar 

  • Promvonge, P., 1999. Numerical Simulation of Turbulent Compressible Vortex-Tubes Flow. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, California.

    Google Scholar 

  • Promvonge, P., Eiamsa-ard, S., 2004. Experimental investigation of temperature separation in a vortex tube refrigerator with snail entrance. ASEAN Journal on Science & Technology for Development, 21:297–308.

    Google Scholar 

  • Pun, W.M., 1992. An Introduction to the TEFESS Code. Internal Report, Mechanical Engineering Department, Imperial College of Science, Technology & Medicine.

    Google Scholar 

  • Ranque, G.J., 1933. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le Journal de Physique et le Radium (Paris), 4:112–114, S-115. Also translated as General Electric Co., Schenectady Works Library, T.F. 3294 (1947).

    Google Scholar 

  • Ranque, G.J., 1934. Method and Apparatus for Obtaining from a Fluid under Pressure Two Outputs of Fluid at Different Temperatures. US Patent No. 1,952,281.

  • Rodi, W.A., 1976. New algebraic relations for calculating the Reynolds stresses. Z. Angew. Math. Mech., 56:T219–T221.

    Article  MATH  Google Scholar 

  • Scheper, G.W., 1951. The vortex tube; internal flow data and a heat transfer theory. J. ASRE, Refrigerating Engineering, 59:985–989.

    Google Scholar 

  • Sloan, D.G., Smith, P.J., Smoot, L.D., 1986. Modeling of swirl in turbulent flow system. Progr. Energy Combust. Sci., 12(3):163–250. [doi:10.1016/0360-1285(86)90016-X]

    Article  Google Scholar 

  • Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D., 1983. An investigation of energy separation in a vortex tube. Int. J. Heat Mass Transfer, 26(3):341–348. [doi:10.1016/0017-9310(83)90038-8]

    Article  Google Scholar 

  • Stephan, K., Lin, S., Durst, M., Huang, F., Seher, D., 1984. A similarity relation for energy separation in a vortex tube. Int. J. Heat Mass Transfer, 27(6):911–920. [doi:10.1016/0017-9310(84)90012-7]

    Article  Google Scholar 

  • Wilcox, C.D., 1993. Turbulent Modelling for CFD. DCW Industries Inc., California.

    Google Scholar 

  • Zhang, J., Nieh, S., Zhou, L., 1992. A new version of algebraic stress model for simulating strongly swirling turbulent flows. J. Numerical Heat Transfer, 22:49–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pongjet Promvonge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, Ea., Pongjet, P. Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube. J. Zhejiang Univ. - Sci. A 7, 1406–1415 (2006). https://doi.org/10.1631/jzus.2006.A1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A1406

Key words

CLC number

Navigation