Skip to main content
Log in

Surfel-based surface modeling for robotic belt grinding simulation

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The new free-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, B., Dutre, P., 2003. Interactive boolean operations on surfel-bounded solids. ACM Trans. Graph., 22(3):651–656. [doi:10.1145/882262.882320]

    Article  Google Scholar 

  • Ayasse, J., 2003. Discrete Displacement Fields: A Versatile Representation of Geometry for Simulation in Computer-Aided Manufacturing. Ph.D Thesis, University Dortmund, Dortmund.

    Google Scholar 

  • Blinn, F.J., 1978. Simulation of Wrinkled Surfaces. Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78. New York, USA, p.286–292. [doi:10.1145/800248.507101]

  • Blum, H., Suttmeier, F.T., 2000. An adaptive finite element discretisation for a simplified Signorini problem. Calcolo., 37(2):65–77. [doi:10.1007/s100920070008]

    Article  MathSciNet  MATH  Google Scholar 

  • Blum, H., Schroeder, A., Suttmeier, F.T., 2003. A Posteriori Error Bounds for Finite Element Schemes for a Model Friction Problem. Witten-Bommerholz.

  • Chhugani, J., Kumar, S., 2003. Budget Sampling of Parametric Surface Patches. Proceedings of the 2003 Symposium on Interactive 3D Graphics. New York, USA, p.131–138.

  • Doggett, M., Hirche, J., 2000. Adaptive View Dependent Tessellation of Displacement Maps. Proceedings from the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. New York, USA, p.59–66.

  • Glaeser, G., Gröller, E., 1998. Efficient Volume-generation During the Simulation of NC-milling. In: Hege, H.C., Polthier, K. (Eds.), Mathematical Visualization. Springer, Heidelburg, p.89–106.

    Chapter  Google Scholar 

  • Hammann, G., 1998. Modellierung des Abtragsverhaltens Elastischer Robotergefuehrter Schleifwerkzeuge. Ph.D Thesis, University Stuttgart, Stuttgart, Germany.

    Book  Google Scholar 

  • Herman, T.G., 1992. Discrete multidimensional jordan surfaces. CVGIP: Graph. Models Image Process, 54(6):507–515. [doi:10.1016/1049-9652(92)90070-E]

    MathSciNet  Google Scholar 

  • Huang, Y., Oliver, H.J., 1994. NC Milling Error Assessment and Tool Path Correction. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, p.287–294. [doi:10.1145/192161.192231]

  • Jerard, R.B., Hussaini, S.Z., Drysdale, R.L., Schaudt, B., 1989. Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer, 5(6):329–348. [doi:10.1007/BF01999101]

    Article  Google Scholar 

  • Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., Ejiri, K., 1991. A flexible quantitative method for NC machining verification using a space-division based solid model. The Visual Computer, 7(2–3):149–157. [doi:10.1007/BF01901185]

    Article  Google Scholar 

  • König, A.H., Gröller, E., 1998. Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-end Graphics Hardware. Proceedings of the Computer Graphics International 1998, p.338–349.

  • Levoy, M., Whitted, T., 1985. The Use of Points as a Display Primitive. Technical Report, Computer Science Department, University of North Carolina at Chapel Hill.

  • Mueller, H., Surmann, T., Stautner, M., Albersmann, F., Weinert, K., 2003. Online Sculpting and Visualization of Multi-dexel Volumes. Proceedings of the Eighth ACM Symposium on Solid Modelling and Applications, p.258–261.

  • Oliver, M.A., Webster, R., 1990. Kriging: a method of interpolation for geographical information system. Int. J. Geographical Information Systems, 4(3):313–332.

    Article  Google Scholar 

  • Pauly, M., Keiser, R., Kobbelt, P.L., Gross, M., 2003. Shape modeling with point-sampled geometry. ACM Trans. Graph., 22(3):641–650. [doi:10.1145/882262.882319]

    Article  Google Scholar 

  • Pfister, H., Zwicker, M., van Baar, J., Gross, M., 2000. Surfels: Surface Elements as Rendering Primitives. Proceedings of SIGGRAPH’00, p.335–342.

  • Rusinkiewicz, S., Levoy, M., 2000. QSplat: A Multiresolution Point Rendering System for Large Meshes. Proceedings of SIGGRAPH’00, p.343–352.

  • Saito, T., Takahashi, T., 1991. NC Machining with G-buffer Method. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’91, ACM Press, p.207–216. [doi:10.1145/122718.122741]

  • Shepard, D., 1968. A Two-dimensional Interpolation Function for Irregularly-spaced Data. Proceedings of the 1968 23rd ACM National Conference. New York, USA, p.517–524. [doi:10.1145/800186.810616]

  • Sourin, I.A., Pasko, A.A., 1996. Function representation for sweeping by a moving solid. IEEE Transactions on Visualization and Computer Graphics, 2(1):11–18. [doi:10.1109/2945.489382]

    Article  Google Scholar 

  • van Hook, T., 1986. Real-time Shaded NC Milling Display. Proceedings from the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’86. ACM Press, p.15–20. [doi:10.1145/15922.15887]

  • Yang, M., Lee, E., 1996. NC verification for wire-EDM using an r-map. Computer Aided Design, 28(9):733–740. [doi:10.1016/0010-4485(95)00079-8]

    Article  Google Scholar 

  • Zwicker, M., Pfister, H., van Baar, J., Gross, M., 2001. Surface Splatting. Proceedings of SIGGRAPH’01, p.371–378.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of the research group 366 (Simulation-Aided Offline Process Design and Optimization in Manufacturing Sculptured Surfaces)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Xy., Mueller, H. & Kuhlenkoetter, B. Surfel-based surface modeling for robotic belt grinding simulation. J. Zhejiang Univ. - Sci. A 7, 1215–1224 (2006). https://doi.org/10.1631/jzus.2006.A1215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A1215

Key words

CLC number

Navigation