Skip to main content
Log in

Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The current massive use of digital communications demands a secure link by using an embedded system (ES) with data encryption at the protocol level. The serial peripheral interface (SPI) protocol is commonly used by manufacturers of ESs and integrated circuits for applications in areas such as wired and wireless communications. We present the design and experimental implementation of a chaotic encryption and decryption algorithm applied to the SPI communication protocol. The design of the chaotic encryption algorithm along with its counterpart in the decryption is based on the chaotic Hénon map and two methods for blur and permute (in combination with DNA sequences). The SPI protocol is configured in 16 bits to synchronize a transmitter and a receiver considering a symmetric key. Results are experimentally proved using two low-cost dsPIC microcontrollers as ESs. The SPI digital-to-analog converter is used to process, acquire, and reconstruct confidential messages based on its properties for digital signal processing. Finally, security of the cryptogram is proved by a statistical test. The digital processing capacity of the algorithm is validated by dsPIC microcontrollers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar-Bustos AY, Cruz-Hernández C, López-Gutiérrez RM, et al., 2010. Hyperchaotic encryption for secure e-mail communication. In: Chbeir R, Badr Y, Abraham A, et al. (Eds.), Emergent Web Intelligence: Advanced Infor-mation Retrieval. Springer, London, p.471–486. https://doi.org/10.1007/978-1-84996-074-8_18

    Chapter  Google Scholar 

  • Alvarez G, Li SJ, 2006. Some basic cryptographic require-ments for chaos-based cryptosystems. Int J Bifurc Chaos, 16(8):2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MATH  Google Scholar 

  • Arellano-Delgado A, López-Gutiérrez RM, Cruz-Hernández C, et al., 2012. Experimental network synchronization via plastic optical fiber. Opt Fiber Technol, 19(12):93–108. https://doi.org/10.1016/j.yofte.2012.11.007

    Google Scholar 

  • Azzaz MS, Tanougast C, Sadoudi S, et al., 2013. A new auto-switched chaotic system and its FPGA implementa-tion. Commun Nonl Sci Numer Simul, 18(7):1792–1804. https://doi.org/10.1016/j.cnsns.2012.11.025

    Article  MATH  Google Scholar 

  • Barr M, Massa A, 2006. Programming Embedded Systems: with C and GNU Development Tools (2nd Ed.). O’Reilly Media, Cambridge, USA, p.18–20, 240-242.

    Google Scholar 

  • Benson D, Cavanaugh M, Clark K, et al., 2013. GenBank. Nucl Acids Res, 41:D36–D42. https://doi.org/10.1093/nar/gks1195

    Article  Google Scholar 

  • Cornish-Bowden A, 1985. Nomenclature for incompletely specified bases in nucleic acid sequences: recommenda-tions 1984. Nucl Acids Res, 13(9):3021–3030. https://doi.org/10.1093/nar/13.9.3021

    Article  Google Scholar 

  • Demosthenous A, Pachnis I, Jiang D, et al., 2013. An inte-grated amplifier with passive neutralization of myoelec-tric interference from neural recording tripoles. IEEE Sens J, 13(9):3236–3248. https://doi.org/10.1109/JSEN.2013.2271477

    Article  Google Scholar 

  • Fúster Sabater A, Hernández Encinas L, Martín Muñoz A, et al., 2012. Criptografía, Protección de Datos Y Aplicaciones: Guía Para Estudiantes Y Profesionales. RA-MA, Madrid, Spain, p.133–157 (in Spanish).

    Google Scholar 

  • Guglielmi V, Pinel P, Fournier-Prunaret D, et al., 2009. Chaos-based cryptosystem on DSP. Chaos Sol Fract, 42(4):2135–2144. https://doi.org/10.1016/j.chaos.2009.03.160

    Article  Google Scholar 

  • Hénon M, 1976. A two-dimensional mapping with a strange attractor. Commun Math Phys, 50(1):69–77. https://doi.org/10.1007/BF01608556

    Article  MathSciNet  MATH  Google Scholar 

  • Jasio LD, 2008. Programming 32-Bit Microcontrollers in C: Exploring the PIC32. Newnes, Burlington, USA.

    Google Scholar 

  • Jyothi M, Chandra LR, Sahithi M, et al., 2012. Implementation of low complex and high secured SPI communication system for multipurpose applications. Int J Comput Sci Inform Technol, 3(1):3214–3219.

    Google Scholar 

  • Leens F, 2009. An introduction to I2C and SPI protocols. IEEE Instrum Meas Mag, 12(1):8–13. https://doi.org/10.1109/MIM.2009.4762946

    Article  Google Scholar 

  • Li LL, Liu Y, Yao QG, 2014. Robust synchronization of chaotic systems using slidingmode and feedback control. J Zhejiang Univ-Sci C (Comput & Electron), 15(3):211–222. https://doi.org/10.1631/jzus.C1300266

    Article  Google Scholar 

  • Liu WH, Sun KH, Zhu CX, 2016. A fast image encryption algorithm based on chaotic map. Opt Lasers Eng, 84:26–36. https://doi.org/10.1016/j.optlaseng.2016.03.019

    Article  Google Scholar 

  • Marinkovic SJ, Popovici EM, 2011. Nano-power wireless wake-up receiver with serial peripheral interface. IEEE J Sel Areas Commun, 29(8):1641–1647. https://doi.org/10.1109/JSAC.2011.110913

    Article  Google Scholar 

  • Méndez-Ramírez R, Cruz-Hernández C, Arellano-Delgado A, et al., 2015. Implementación del Circuito Hipercaótico de Chua en un Sistema Embebido de Bajo Costo. http://amca.mx/memorias/amca2015/articulos/0032_MiBT3-04.pdf [Accessed on Nov. 10, 2016] (in Spanish).

    Google Scholar 

  • Menezes AJ, van Oorschot PC, Vanstone SA, 1996. Handbook of Applied Cryptography. CRC Press, Boca Raton, USA.

    Book  MATH  Google Scholar 

  • Microchip Technology Inc., 1997. IEEE 754 Compliant Floating Point Routines. http://www.microchip.com/ stellent/groups/techpub_sg/documents/appnotes/cn01096 1.pdf [Accessed on Mar. 21, 2018].

  • Microchip Technology Inc., 2004. dsPIC30F3014, dsPIC30F4013 Data Sheet. http://ww1.microchip.com/ downloads/en/devicedoc/70138c.pdf [Accessed on Nov. 10, 2016].

  • Microchip Technology Inc., 2006. AN1044 Data Encryption Routines for PIC24 and dsPIC® Devices. http://ww1.microchip.com/downloads/en/AppNotes/AN1044a.pdf [Accessed on Nov. 10, 2016].

  • Microchip Technology Inc., 2018. Encryption Routines for PIC24, dsPIC, and PIC32. http://www.microchip.com/ SWLibraryWeb/product.aspx?product=Encryption%20R outines [Accessed on Mar. 21, 2018].

  • Mikroelectronika, 2014. MikroC Pro for dsPIC Manual. http://download.mikroe.com/documents/compilers/mikroc/dspic/mikroc-dspic-manual-v100.pdf [Accessed on Mar. 21, 2018].

  • Motorola Inc., 2003. SPI Block Guide V03.06. https://opencores.org/usercontent,doc,1499360489 [Ac-cessed on Mar. 21, 2018].

  • Muhaya FB, Usama M, Khan MK, 2009. Modified AES using chaotic key generator for satellite imagery encryption. In: Huang S, Jo KH, Lee HH, et al. (Eds.), Emerging In-telligent Computing Technology and Applications. Springer, Berlin Heidelberg, p.1014–1024. https://doi.org/10.1007/978-3-642-04070-2_107

    Chapter  Google Scholar 

  • Murillo-Escobar MÁ, Cruz-Hernández C, Abúndiz-Pérez F, et al., 2015a. A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process, 109:119–131. https://doi.org/10.1016/j.sigpro.2014.10.033

    Article  Google Scholar 

  • Murillo-Escobar MÁ, Cruz-Hernández C, Abúndiz-Pérez F, et al., 2015b. A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Exp Syst Appl, 42(21):8198–8211. https://doi.org/10.1016/j.eswa.2015.06.035

    Article  Google Scholar 

  • Nyquist H, 1928. Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng, 47(2):617–644. https://doi.org/10.1109/T-AIEE.1928.5055024

    Article  Google Scholar 

  • Oudjida AK, Berrandjia ML, Tiar R, et al., 2009. FPGA im-plementation of I2C & SPI protocols: a comparative study. 16th IEEE Int Conf on Electronics, Circuits, and Systems, p.507–510. https://doi.org/10.1109/ICECS.2009.5410881

    Google Scholar 

  • Philips Semiconductors, 1995. The I²C-bus and how to use it. http://www.i2cbus.org/fileadmin/ftp/i2c_bus_specification_1995.pdf [Accessed on Nov. 10, 2016].

  • Philips Semiconductors, 2003. AN10216-01 I²C Manual. http://www.nxp.com/documents/application_note/AN10216.pdf [Accessed on Nov. 10, 2016].

  • Rhouma R, Belghith S, 2011. Cryptanalysis of a chaos-based cryptosystem on DSP. Commun Nonl Sci Numer Simul, 16(2):876–884. https://doi.org/10.1016/j.cnsns.2010.05.017

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon CE, 1949. Communication in the presence of noise. Proc IRE, 37(1):10–21. https://doi.org/10.1109/JRPROC.1949.232969

    Article  MathSciNet  Google Scholar 

  • Siddiqui RA, Grosvenor RI, Prickett PW, 2015. dsPIC-based advanced data acquisition system for monitoring, control and security applications. 12th Int Bhurban Conf on Ap-plied Sciences and Technology, p.293–298. https://doi.org/10.1109/IBCAST.2015.7058519

    Google Scholar 

  • Sipser M, 2006. Introduction to the Theory of Computation (2nd Ed.). Thomson Course Technology, Boston, USA.

    MATH  Google Scholar 

  • Tumenjargal E, Badarch L, Kwon H, et al., 2013. Embedded software and hardware implementation system for a hu-man machine interface based on ISOAgLib. J Zhejiang Univ-Sci C (Comput & Electron), 14(3):155–166. https://doi.org/10.1631/jzus.C1200270

    Article  Google Scholar 

  • Uriz AJ, Agüero PD, Moreira JC, et al., 2016. Flexible pseu-dorandom number generator for tinnitus treatment im-plemented on a dsPIC. IEEE Latin Am Trans, 14(1):72–77. https://doi.org/10.1109/TLA.2016.7430063

    Article  Google Scholar 

  • Yalcin ME, Suykens JAK, Vandewalle J, 2004. True random bit generation from a double-scroll attractor. IEEE Trans Circ Syst I, 51(7):1395–1404. https://doi.org/10.1109/TCSI.2004.830683

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Cruz-Hernández.

Additional information

Project supported by the CONACYT, México (No. 166654)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Ramírez, R., Arellano-Delgado, A., Cruz-Hernández, C. et al. Chaotic digital cryptosystem using serial peripheral interface protocol and its dsPIC implementation. Frontiers Inf Technol Electronic Eng 19, 165–179 (2018). https://doi.org/10.1631/FITEE.1601346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601346

Key words

CLC number

Navigation