Skip to main content
Log in

Series transformer based diode-bridge-type solid state fault current limiter

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We propose a novel series transformer based diode-bridge-type solid state fault current limiter (SSFCL). To control the fault current, a series RLC branch is connected to the secondary side of an isolation series transformer. Based on this RLC branch, two current limiting modes are created. In the first mode, R and C are bypassed via a paralleled power electronic switch (insulated-gate bipolar transistor, IGBT) and L remains connected to the secondary side of the transformer as a DC reactor. In the second mode, the series reactor impedance is not enough to limit the fault current. In this case, the fault current can be controlled by selecting a proper on-off duration of the parallel IGBT, across the series damping resistor (R. and capacitor, which inserts high impedance into the line to limit the fault current. Then, by controlling the magnitude of the DC reactor current, the fault current is reduced and the voltage of the point of common coupling (PCC) is kept at an acceptable level. In addition, in the new SSFCL, the series RC branch, connected in parallel with the IGBT, serves as a snubber circuit for decreasing the transient recovery voltage (TRV) of the IGBT during on-off states. Therefore, the power quality indices can be improved. The measurement results of a built prototype are presented to support the simulation and theoretical studies. The proposed SSFCL can limit the fault current without any delay and successfully smooth the fault current waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramovitz, A., Smedley, K.M., 2012. Survey of solid-state fault current limiters. IEEE Trans. Power Electron., 27(6):2770–2782. [doi:10.1109/TPEL.2011.2174804]

    Article  Google Scholar 

  • Amanulla, B., Chakrabarti, S., Singh, S.N., 2012. Reconfiguration of power distribution systems considering reliability and power loss. IEEE Trans. Power Deliv., 27(2): 918–926. [doi:10.1109/TPWRD.2011.2179950]

    Article  Google Scholar 

  • Cheng, S., Chen, M.Y., Wai, R.J., et al., 2014. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(4):300–311. [doi:10.1631/jzus.C13 00250]

    Article  Google Scholar 

  • Cvoric, D., de Haan, S.W.H., Ferreira, J.A., 2008. Comparison of the four configurations of the inductive fault current limiter. IEEE Power Electronics Specialists Conf., p.3967–3973. [doi:10.1109/PESC.2008.4592574]

    Google Scholar 

  • Du, H.I., Kim, Y.J., Lee, D.H., et al., 2011. Effect of the resistance of two different coated conductors on the current-limiting performance of flux-lock type superconducting fault current limiters. IEEE Trans. Appl. Supercond., 21(3):1254–1257. [doi:10.1109/TASC.2011.210 4350]

    Article  Google Scholar 

  • Fani, B., Hamedani Golshan, M.E., Askarian Abyaneh, H., 2011. Waveform feature monitoring scheme for transformer differential protection. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(2):116–123. [doi:10.1631/jzus.C1010042]

    Article  Google Scholar 

  • Firouzi, M., Gharehpetian, G.B., Pishvaei, M., 2013. A dualfunctional bridge type FCL to restore PCC voltage. Int. J. Electr. Power Energy Syst., 46:49–55. [doi:10.1016/j.ijepes.2012.09.011]

    Article  Google Scholar 

  • Ghanbari, T., Farjah, E., 2013. Unidirectional fault current limiter: an efficient interface between the microgrid and main network. IEEE Trans. Power Syst., 28(2):1591–1598. [doi:10.1109/TPWRS.2012.2212728]

    Article  Google Scholar 

  • Globalspec, 2015. The Engineering Search Engine. Globalspec, Inc., USA. Available from http://www.globalspec.com

  • Hagh, M.T., Abapour, M., 2007. DC reactor type transformer inrush current limiter. IET Electr. Power Appl., 1(5):808–814. [doi:10.1049/iet-epa:20060511]

    Article  Google Scholar 

  • Hagh, M.T., Abapour, M., 2009a. Non-superconducting fault current limiters. Eur. Trans. Electr. Power, 19(5):669–682. [doi:10.1002/etep.247]

    Article  Google Scholar 

  • Hagh, M.T., Abapour, M., 2009b. Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents. IEEE Trans. Power Electron., 24(3):613–619. [doi:10.1109/TPEL.2008.2004496]

    Article  Google Scholar 

  • Hanif, A., Choudhry, M.A., 2009. Dynamic voltage regulation and power export in a distribution system using distributed generation. J. Zhejiang Univ.-Sci. A, 10(10): 1523–1531. [doi:10.1631/jzus.A0820699]

    Article  Google Scholar 

  • Iwahara, M., Mukhopadhyay, S.C., Yamada, S., et al., 1999. Development of passive fault current limiter in parallel biasing mode. IEEE Trans. Magn., 35(5): 3523–3525. [doi:10.1109/20.800577]

    Article  Google Scholar 

  • Jafari, M., Naderi, S.B., Hagh, M.T., et al., 2011. Voltage sag compensation of point of common coupling (PCC) using fault current limiter. IEEE Trans. Power Deliv., 26(4): 2638–2646. [doi:10.1109/TPWRD.2011.2161496]

    Article  Google Scholar 

  • Jang, J.Y., Park, D.K., Yang, S.E., et al., 2010. A study on the non-inductive coils for hybrid fault current limiter using experiment and numerical analysis. IEEE Trans. Appl. Supercond., 20(3):1151–1154. [doi:10.1109/TASC.2010.2041219]

    Article  Google Scholar 

  • Liu, J.M., Fan, T.R., Tong, K.Z., 2007. Research of network technology for intelligent circuit breaker controller. J. Zhejiang Univ.-Sci. A, 8(3):464–468. [doi:10.1631/jzus.2007.A0464]

    Article  Google Scholar 

  • Madani, S.M., Rostami, M., Gharehpetian, G.B., et al., 2013. Improved bridge type inrush current limiter for primary grounded transformers. Electr. Power Syst. Res., 95:1–8. [doi:10.1016/j.epsr.2012.08.012]

    Article  Google Scholar 

  • McAullife, J., Amin, D., Peacock, I., et al., 2001. Optimizing capital costs in power-distribution upgrades. IEEE Ind. Appl. Mag., 7(5):41–51. [doi:10.1109/2943.948531]

    Article  Google Scholar 

  • Na, J.B., Kim, Y.J., Jang, J.Y., et al., 2012. Design and tests of prototype hybrid superconducting fault current limiter with fast switch. IEEE Trans. Appl. Supercond., 22(3): 5602604. [doi:10.1109/TASC.2011.2182334]

    Article  Google Scholar 

  • Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., 2015a. Novel high performance DC reactor type fault current limiter. Electr. Power Syst. Res., 122:198–207. [doi:10.1016/j. epsr.2015.01.005]

    Article  Google Scholar 

  • Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., 2015b. Series transformer based solid state fault current limiter. IEEE Trans. Smart Grid, 6(4):1983–1991. [doi:10.1109/TSG.2015.2398365]

    Article  Google Scholar 

  • Tsuda, M., Mitani, Y., Tsuji, K., et al., 2001. Application of resistor based superconducting fault current limiter to enhancement of power system transient stability. IEEE Trans. Appl. Supercond., 11(1):2122–2125. [doi:10.1109/77.920276]

    Article  Google Scholar 

  • Vintan, M., 2008. Evaluating transmission towers potentials during ground faults. J. Zhejiang Univ.-Sci. A, 9(2):182–189. [doi:10.1631/jzus.A072206]

    Article  MATH  Google Scholar 

  • Wu, Z.L., Chen, P.P., Tan, L.Y., et al., 2001. Short circuit current limiter in AC network. J. Zhejiang Univ.-Sci., 2(1):41–45. [doi:10.1631/jzus.2001.0041]

    Article  Google Scholar 

  • Yamaguchi, H., Kataoka, T., 2008. Current limiting characteristics of transformer type superconducting fault current limiter with shunt impedance and inductive load. IEEE Trans. Appl. Supercond., 18(2):668–671. [doi:10. 1109/TASC.2008.921258]

    Article  Google Scholar 

  • Ye, L., Lin, L.Z., Juengst, K.P., 2002. Application studies of superconducting fault current limiters in electric power systems. IEEE Trans. Appl. Supercond., 12(1):900–903. [doi:10.1109/TASC.2002.1018545]

    Article  Google Scholar 

  • Zhao, C., Lu, J.Z., Fang, Z., et al., 2010. Study of a novel fault current limiter on the basis of high speed switch and triggered vacuum switch. 5th Int. Conf. on Critical Infrastructure, p.1–5. [doi:10.1109/CRIS.2010.5617487]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Radmanesh.

Additional information

ORCID: Amir HEIDARY, http://orcid.org/0000-0001-8234-6387; Hamid RADMANESH, http://orcid.org/0000-0002-3261-642X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, A., Radmanesh, H., Fathi, S.H. et al. Series transformer based diode-bridge-type solid state fault current limiter. Frontiers Inf Technol Electronic Eng 16, 769–784 (2015). https://doi.org/10.1631/FITEE.1400428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400428

Keywords

CLC number

Navigation