Skip to main content
Log in

An improved low-complexity sum-product decoding algorithm for low-density parity-check codes

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this paper, an improved low-complexity sum-product decoding algorithm is presented for low-density parity-check (LDPC) codes. In the proposed algorithm, reduction in computational complexity is achieved by utilizing fast Fourier transform (FFT) with time shift in the check node process. The improvement in the decoding performance is achieved by utilizing an optimized integer constant in the variable node process. Simulation results show that the proposed algorithm achieves an overall coding gain improvement ranging from 0.04 to 0.46 dB. Moreover, when compared with the sum-product algorithm (SPA), the proposed decoding algorithm can achieve a reduction of 42%–67% of the total number of arithmetic operations required for the decoding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chandrasetty, V.A., Aziz, S.M., 2011. FPGA implementation of a LDPC decoder using a reduced complexity message passing algorithm. J. Netw., 6(1):36–45. [doi:10.4304/jnw.6.1.36-45]

    Google Scholar 

  • Chung, S.Y., Forney, G.D., Richardson, T.J., et al., 2001. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett., 5(2):58–60. [doi:10.1109/4234.905935]

    Article  Google Scholar 

  • Fossorier, M.P.C., Mihaljevic, M., Imai, H., 1999. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans. Commun., 47(5):673–680. [doi:10.1109/26.768759]

    Article  Google Scholar 

  • Gallager, R.G., 1962. Low-density parity-check codes. IRE Trans. Inform. Theory, 8(1):21–28. [doi:10.1109/TIT.1962.1057683]

    Article  MATH  MathSciNet  Google Scholar 

  • Goupil, A., Colas, M., Gelle, G., et al., 2007. FFT-based BP decoding of general LDPC codes over Abelian groups. IEEE Trans. Commun., 55(4):644–649. [doi:10.1109/TCOMM.2007.894089]

    Article  Google Scholar 

  • He, Y.C., Sun, S.H., Wang, X.M., 2002. Fast decoding of LDPC codes using quantisation. Electron. Lett., 38(4): 189–190. [doi:10.1049/el:20020131]

    Article  Google Scholar 

  • IEEE, 2009. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2009. [doi:10.1109/IEEESTD.2009.5062485]

    Google Scholar 

  • IEEE, 2015. IEEE Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE P802.11-REVmc/D4.0.

    Google Scholar 

  • Jiang, X., Lee, M.H., Qi, J., 2012. Improved progressive edge-growth algorithm for fast encodable LDPC codes. EURASIP J. Wirel. Commun. Netw., 2012:178.1–178.10. [doi:10.1186/1687-1499-2012-178]

    Article  Google Scholar 

  • Johnson, S.G., Frigo, M., 2007. A modified split-radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process., 55(1):111–119. [doi:10.1109/TSP.2006.882087]

    Article  MathSciNet  Google Scholar 

  • Lee, M.H., Han, J.H., Sunwoo, M.H., 2008. New simplified sum-product algorithm for low complexity LDPC decoding. IEEE Workshop on Signal Processing Systems, p.61–66. [doi:10.1109/SIPS.2008.4671738]

    Google Scholar 

  • MacKay, D.J.C., Neal, R.M., 1997. Near Shannon limit performance of low density parity check codes. Electron. Lett., 33(6):457–458. [doi:10.1049/el:19970362]

    Article  Google Scholar 

  • Morello, A., Mignone, V., 2006. DVB-S2: the second generation standard for satellite broad-band services. Proc. IEEE, 94(1):210–227. [doi:10.1109/JPROC.2005.861013]

    Article  Google Scholar 

  • Papaharalabos, S., Sweeney, P., Evans, B.G., et al., 2007. Modified sum-product algorithm for decoding low-density parity-check codes. IET Commun., 1(3):294–300. [doi:10.1049/iet-com:20060173]

    Article  Google Scholar 

  • Richardson, T.J., Urbanke, R.L., 2001. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory, 47(2):599–618. [doi:10.1109/18.910577]

    Article  MATH  MathSciNet  Google Scholar 

  • Safarnejad, L., Sadeghi, M.R., 2012. FFT based sum-product algorithm for decoding LDPC lattices. IEEE Commun. Lett., 16(9):1504–1507. [doi:10.1109/LCOMM.2012.073112.120996]

    Article  Google Scholar 

  • Sorensen, H.V., Heideman, M., Burrus, C.S., 1986. On computing the split-radix FFT. IEEE Trans. Acoust. Speech Signal Process., 34(1):152–156. [doi:10.1109/TASSP.1986.1164804]

    Article  Google Scholar 

  • Yuan, L., Tian, X., Chen, Y., 2011. Pruning split-radix FFT with time shift. Proc. Int. Conf. on Electronics, Communications and Control, p.1581–1586. [doi:10.1109/ICECC.2011.6066654]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaelraj Kingston Roberts.

Additional information

ORCID: Michaelraj Kingston ROBERTS, http://orcid.org/0000-0002-1484-703X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, M.K., Jayabalan, R. An improved low-complexity sum-product decoding algorithm for low-density parity-check codes. Frontiers Inf Technol Electronic Eng 16, 511–518 (2015). https://doi.org/10.1631/FITEE.1400269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400269

Key words

CLC number

Navigation