Skip to main content
Log in

Assessment of the post-fire residual bearing capacity of FRC and hybrid RC-FRC tunnel sections considering thermal spalling

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A design-oriented numerical model for the analysis of RC, FRC, and RC-FRC tunnel sections exposed to fire with different spalling parameters is presented. The numerical model is conceived in two steps: the first is the determination of the temperature field in the cross-section exposed to fire according to the spalling parameters; and the second is the determination of the bearing capacity of sections based on the thermal field in the section. At last, a parametric study was conducted to evaluate the effect of the fire curve, the spalling parameters, the reinforcement type, and the rebar’s concrete cover on the bearing capacity of the sections. The results showed that the use of FRC as total or partial substitution to RC mitigates the fire-related reduction in the bearing capacity of the sections. Moreover, increasing the RC concrete cover is beneficial only if thermal spalling is avoided. When thermal spalling occurs, the FRC and RC-FRC solutions yielded the lowest reductions in the bearing capacity among the reinforcement solutions tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available on request from the corresponding author.

References

  1. de la Fuente A, Pujadas P, Blanco A, Aguado A (2012) Experiences in Barcelona with the use of fibres in segmental linings. Tunn Undergr Sp Technol. https://doi.org/10.1016/j.tust.2011.07.001

    Article  Google Scholar 

  2. Caratelli A, Meda A, Rinaldi Z, Romualdi P (2011) Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunn Undergr Sp Technol 26:284–291. https://doi.org/10.1016/j.tust.2010.10.003

    Article  Google Scholar 

  3. de la Fuente A, Blanco A, Armengou J, Aguado A (2017) Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. case study: extension line to Barcelona airport T1. Tunn Undergr Sp Technol 61:179–188. https://doi.org/10.1016/j.tust.2016.10.008

    Article  Google Scholar 

  4. Liao L, de la Fuente A, Cavalaro S, Aguado A (2016) Design procedure and experimental study on fibre reinforced concrete segmental rings for vertical shafts. Mater Des 92:590–601. https://doi.org/10.1016/j.matdes.2015.12.061

    Article  Google Scholar 

  5. Granju J-L, Ullah Balouch S (2005) Corrosion of steel fibre reinforced concrete from the cracks. Cem Concr Res 35:572–577. https://doi.org/10.1016/j.cemconres.2004.06.032

    Article  Google Scholar 

  6. Maevski IY (2011) Design Fires in Road Tunnels. National Academies Press, Washington, D.C.

    Book  Google Scholar 

  7. Zheng WZ, Li HY, Wang Y, Xie HY (2011) Tensile properties of steel fiber-reinforced reactive powder concrete after high temperature. Adv Mater Res 413:270–276

    Article  Google Scholar 

  8. Tai Y-S, Pan H-H, Kung Y-N (2011) Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800°C. Nucl Eng Des 241:2416–2424. https://doi.org/10.1016/j.nucengdes.2011.04.008

    Article  Google Scholar 

  9. Poon CS, Shui ZH, Lam L (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem Concr Res 34:2215–2222. https://doi.org/10.1016/j.cemconres.2004.02.011

    Article  Google Scholar 

  10. Serafini R, Santos FP, Agra RR et al (2018) Effect of specimen shape on the compressive parameters of steel fiber reinforced concrete after temperature exposure. J Urban Technol Sustain. 1:10–20. https://doi.org/10.47842/juts.v1i1.7

    Article  Google Scholar 

  11. Sukontasukkul P, Pomchiengpin W, Songpiriyakij S (2010) Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Constr Build Mater 24:1967–1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003

    Article  Google Scholar 

  12. Serafini R, Agra RR, Salvador RP et al (2021) Double edge wedge splitting test to characterize the design postcracking parameters of fiber-reinforced concrete subjected to high temperatures. J Mater Civ Eng 33:04021069. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003701

    Article  Google Scholar 

  13. Rambo DAS, Blanco A, de Figueiredo AD et al (2018) Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: an approach focused on tunnels assessment. Constr Build Mater 158:443–453. https://doi.org/10.1016/j.conbuildmat.2017.10.046

    Article  Google Scholar 

  14. Agra RR, Serafini R, de Figueiredo AD (2021) Effect of high temperature on the mechanical properties of concrete reinforced with different fiber contents. Constr Build Mater 301:124242. https://doi.org/10.1016/j.conbuildmat.2021.124242

    Article  Google Scholar 

  15. Yan Z, Zhu H, Ju JW (2013) Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures. Constr Build Mater 38:610–618. https://doi.org/10.1016/j.conbuildmat.2012.09.019

    Article  Google Scholar 

  16. Di Carlo F, Meda A, Rinaldi Z (2018) Evaluation of the bearing capacity of fiber reinforced concrete sections under fire exposure. Mater Struct 51:154. https://doi.org/10.1617/s11527-018-1280-2

    Article  Google Scholar 

  17. Carpio JM, Serafini R, Rambo D, et al (2019) Assessment of the bearing capacity reduction of FRC elements subjected to fire. In: Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures. Kraków, Poland. 1378–1386

  18. Fu Y, Li L (2011) Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater Struct 44:361–376. https://doi.org/10.1617/s11527-010-9632-6

    Article  Google Scholar 

  19. Yasuda F, Ono K, Otsuka T (2004) Fire protection for TBM shield tunnel lining. Tunn Undergr Sp Technol 19:317. https://doi.org/10.1016/j.tust.2004.01.018

    Article  Google Scholar 

  20. Yan Z, Zhu H, Woody JuJ, Ding W (2012) Full-scale fire tests of RC metro shield TBM tunnel linings. Constr Build Mater 36:484–494. https://doi.org/10.1016/j.conbuildmat.2012.06.006

    Article  Google Scholar 

  21. Zhang Y, Ju JW, Zhu H, Yan Z (2020) A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete. Int J Damage Mech 29:19–44. https://doi.org/10.1177/1056789519831554

    Article  Google Scholar 

  22. Bosnjak J (2014) Explosive spalling and permeability of high performance concrete under fire: numerical and experimental investigations. University of Stuttgart

  23. Periskic G (2009) Development of a 3D thermo-hygro-mechanical model for concrete under fire and application to fastenings loaded in tension. University of Stuttgart

  24. Ozbolt J, Periskic G, Reinhardt H-W, Eligehausen R (2008) Numerical analysis of spalling of concrete cover at high temperature. Comput Concr 5:279–293. https://doi.org/10.12989/cac.2008.5.4.279

    Article  Google Scholar 

  25. International Tunnelling and Underground Space Association (2016) ITAtech Report n 7 - Design guidance for precast fibre reinforced concrete segments

  26. Fédération Internationale du Béton (2008) Bulletin 46 - Fire design of concrete structures - structural behaviour and assessment. Switzerland

  27. Fédération Internationale du Béton (2017) Bulletin 83 - Precast Tunnel Segments in Fibre-Reinforced Concrete. Switzerland

  28. Federation Internationale du Beton (2013) Model Code for Concrete Structures 2010. Ernst & Sohn, Germany, p 434

    Google Scholar 

  29. Crespo MD, Molins C, Marí AR (2013) Effect of variations in thermal-curing cycle on the cracking risk of precast segmental tunnel lining. Constr Build Mater 49:201–213. https://doi.org/10.1016/j.conbuildmat.2013.07.078

    Article  Google Scholar 

  30. Serafini R, Dantas SRA, Salvador RP et al (2019) Influence of fire on temperature gradient and physical-mechanical properties of macro-synthetic fiber reinforced concrete for tunnel linings. Constr Build Mater 214:254–268. https://doi.org/10.1016/j.conbuildmat.2019.04.133

    Article  Google Scholar 

  31. Kusterle W, Lindbauer W, Hampejs G et al (2004) Technical Report 544: Fire resistance of fibre-reinforced, reinforced and prestressed concrete. Bundesministerium für Verkehr, Innovation und Technologie, Vienna ([in German])

    Google Scholar 

  32. BS EN 1992–1–2 (2004) Eurocode 2 Design of concrete structures - Part 1–2: General rules-Structural fire design. Des Concr Struct - Part 1–2 Gen rules-Structural fire Des

  33. CNR-DT 204 (2007) Guide for the Design and Construction of Fibre-Reinforced Concrete Structures. Ital Natl Res Counc (CNR), Rome, Italy. https://doi.org/10.14359/10516

  34. EN 14651 (2007) Test method for metallic fibred concrete — Measuring the flexural tensile strength (limit of proportionality (LOP), residual). United Kingdom

  35. Agra RR (2020) Influence of temperature on the behavior of concrete with diferent fiber content (In Portuguese). Universidade de São Paulo

  36. Cugat V, Cavalaro SHP, Bairán JM, de la Fuente A (2020) Safety format for the flexural design of tunnel fibre reinforced concrete precast segmental linings. Tunn Undergr Sp Technol 103:103500. https://doi.org/10.1016/j.tust.2020.103500

    Article  Google Scholar 

  37. Cavalaro SHP, Aguado A (2015) Intrinsic scatter of FRC: an alternative philosophy to estimate characteristic values. Mater Struct 48:3537–3555. https://doi.org/10.1617/s11527-014-0420-6

    Article  Google Scholar 

Download references

Funding

This work was funded by the Institute for Technological Research (IPT) and its foundation (FIPT) through the New Talents Program [grant #N.01/2017 (Ramoel Serafini)] and partially funded the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant # 305055/2019–4 (Antonio Domingues de Figueiredo)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramoel Serafini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code availability

The code is available upon request made directly to the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serafini, R., de La Fuente, A. & de Figueiredo, A.D. Assessment of the post-fire residual bearing capacity of FRC and hybrid RC-FRC tunnel sections considering thermal spalling. Mater Struct 54, 219 (2021). https://doi.org/10.1617/s11527-021-01819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01819-2

Keywords

Navigation