Skip to main content

Advertisement

Log in

Evaluation of waste materials as alternative sources of filler in asphalt mixtures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

There are many different ways to reduce the construction industry’s impact on environment. The incorporation of waste in the fabrication of construction materials may be beneficial for both the waste management sector and the construction industry. The aim of this research was to investigate the use of three different waste materials (construction and demolition waste, brick powder and fly ash) as filler in asphalt mixtures. Limestone filler was used as reference material. The materials were characterized in terms of their geometrical, physical and chemical properties, and the interaction with bitumen was assessed with two mastic test methods using four different bitumens. The specific surface of waste materials shows a wide-ranging variation due to material specific shape and texture of particles. However, the Rigden voids and bitumen number tests adequately measure the stiffening effect of these materials. The delta ring and ball test results showed there is a good relation with the filler content when the results are affected by the bitumen type. The f/b ratio for a specific bitumen–filler combination can be determined from the maximum filler-to-bitumen ratio and the recommended stiffening increase. The mastics with these waste materials showed strong resistance to water damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eurostat (2015) Eurostat—data explorer. http://appsso.eurostat.ec.europa.eu/nui/show.do. Accessed 11 April 2016

  2. E.-E.P. and Council (2008) Waste Framework Directive 2008/98/EC of 19 November, 2008

  3. B.I. Service (2011) Service contract on management of construction and demolition waste—SR1 (project under the Framework contract ENV.G.4/FRA/2008/0112), Paris, France

  4. European Commission (2016) Studies—environment—European Commission. http://ec.europa.eu/environment/waste/studies/mixed_waste.htm. Accessed 11 April 2016

  5. EAPA (2014) Asphalt in figures 2014. European Asphalt Pavement Association, Belgium

    Google Scholar 

  6. González-Fonteboa B, Carro-López D, de Brito J, Martínez-Abella F, Seara-Paz S, Gutiérrez-Mainar S (2017) Comparison of ground bottom ash and limestone as additions in blended cements. Mater Struct 50:84. https://doi.org/10.1617/s11527-016-0954-x

    Article  Google Scholar 

  7. Environment Agency (2013) Aggregates from inert waste. End of waste criteria for the production of aggregates from inert waste, Oxon, UK

  8. Airey GD, Collop AC, Zoorob SE, Elliott RC (2008) The influence of aggregate, filler and bitumen on asphalt mixture moisture damage. Constr Build Mater 22:2015–2024. https://doi.org/10.1016/j.conbuildmat.2007.07.009

    Article  Google Scholar 

  9. Curtis CW (1990) A literature review of liquid antistripping agents, mineral additives and test for measuring stripping. National Academy of Science, USA

    Google Scholar 

  10. Khodaii A, Mousavi ES, Khedmati M, Iranitalab A (2016) Identification of dominant parameters for stripping potential in warm mix asphalt using response surface methodology. Mater Struct 49:2425–2437. https://doi.org/10.1617/s11527-015-0658-7

    Article  Google Scholar 

  11. Lesueur D, Petit J, Ritter H-J (2013) The mechanisms of hydrated lime modification of asphalt mixtures: a state-of-the-art review. Road Mater Pavement Des 14:1–16. https://doi.org/10.1080/14680629.2012.743669

    Article  Google Scholar 

  12. Bahia HU, Faheem A, Hintz C, Al-Qadi I, Reinke G, Dukatz E (2010) Test methods and specification criteria for mineral filler used in HMA. Transportation Research Board, USA

    Google Scholar 

  13. Jakarni FM (2012) Adhesion of asphalt mixtures. PhD Thesis, University of Nottingham, UK

  14. Read J, Whiteoak D (2003) The shell bitumen handbook, 5th edn. Thomas Telford, London

    Google Scholar 

  15. Little DN, Epps JA (2006) The benefits of hydated lime in hot mix asphalt. National Lime Association, USA

    Google Scholar 

  16. Kim YR (2008) Modeling of asphalt concrete. McGraw Hill, New York

    Google Scholar 

  17. Antunes V, Freire AC, Quaresma L, Micaelo R (2016) Effect of the chemical composition of fillers in the filler–bitumen interaction. Constr Build Mater 104:85–91. https://doi.org/10.1016/j.conbuildmat.2015.12.042

    Article  Google Scholar 

  18. ASTM D242-95 (Reapproved 2000) Standard specification for mineral filler for bituminous paving mixtures. ASTM International, USA

  19. EP (2012) Construction specifications book. 14.03—Materials (in Portuguese). Estradas de Portugal, Lisbon

  20. Petho L (2013) Mastic performance assessment in stone mastic asphalt. Austroads Ltd, Sydney

    Google Scholar 

  21. Chen M, Lin J, Wu S (2011) Potential of recycled fine aggregates powder as filler in asphalt mixture. Constr Build Mater 25:3909–3914. https://doi.org/10.1016/j.conbuildmat.2011.04.022

    Article  Google Scholar 

  22. Ekblad J, Lundström R, Simonsen E (2015) Water susceptibility of asphalt mixtures as influenced by hydraulically active fillers. Mater Struct 48:1135–1147. https://doi.org/10.1617/s11527-013-0220-4

    Article  Google Scholar 

  23. Androjić I, Dimter S (2016) Properties of hot mix asphalt with substituted waste glass. Mater Struct 49:249–259. https://doi.org/10.1617/s11527-014-0492-3

    Article  Google Scholar 

  24. Chen M, Lin J, Wu S, Liu C (2011) Utilization of recycled brick powder as alternative filler in asphalt mixture. Constr Build Mater 25:1532–1536. https://doi.org/10.1016/j.conbuildmat.2010.08.005

    Article  Google Scholar 

  25. Al-Hdabi A (2016) Laboratory investigation on the properties of asphalt concrete mixture with Rice Husk Ash as filler. Constr Build Mater 126:544–551. https://doi.org/10.1016/j.conbuildmat.2016.09.070

    Article  Google Scholar 

  26. Modarres A, Rahmanzadeh M (2014) Application of coal waste powder as filler in hot mix asphalt. Constr Build Mater 66:476–483. https://doi.org/10.1016/j.conbuildmat.2014.06.002

    Article  Google Scholar 

  27. Azzam MOJ, Al-Ghazawi Z (2015) Evaluation of incorporating oil shale filler aggregate into hot mix asphalt using Superpave mix design. Constr Build Mater 101(Part):359–379. https://doi.org/10.1016/j.conbuildmat.2015.10.071

    Article  Google Scholar 

  28. Sangiorgi C, Tataranni P, Simone A, Vignali V, Lantieri C, Dondi G (2016) Assessment of waste bleaching clay as alternative filler for the production of porous asphalts. Constr Build Mater 109:1–7. https://doi.org/10.1016/j.conbuildmat.2016.01.052

    Article  Google Scholar 

  29. Pasandín AR, Pérez I, Ramírez A, Cano MM (2016) Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. J Clean Prod 112(Part 1):853–862. https://doi.org/10.1016/j.jclepro.2015.06.016

    Article  Google Scholar 

  30. Freire AC, Neves J, Roque A, Martins I, Antunes ML, Faria G (2013) Use of construction and demolition recycled materials (C&DRM) in road pavements validated on experimental test sections. In: 2nd International conference on WASTES—solutions, treatments and opportunities, pp 91–96

  31. IPQ, NP EN 771-1 + A1:2016-pt (2016) Specification for masonry units. Part 1: clay masonry units. Instituto Português da Qualidade, Caparica

  32. IPQ, NP EN 450-1:2012-pt (2012) Fly ash for concrete. Part 1: definition, specifications and conformity criteria. Instituto Português da Qualidade, Caparica

  33. JAE (1998) Construction specifications book. 14.03—Materials (in Portuguese), Junta Autónoma de Estradas, Almada

  34. IPQ, NP EN 13043:2004/AC:2010 (2010) Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas. Instituto Português da Qualidade, Caparica

  35. CEN, EN 933-10:2009 (2009) Test for geometrical properties of aggregates. Part 10: Assessment of fines—grading of filler aggregates (air jet sieving). European Committee for Standardization, Belgium

  36. ASTM, ASTM E986-04 (2010) Standard practice for scanning electron microscope beam size characterization. American Society for Testing and Materials, USA

  37. Pereira E (1995) Grading analysis of cement with the laser diffraction method (in Portuguese). National Laboratory for Civil Engineering, Lisbon

    Google Scholar 

  38. IPQ, NP EN 1097-5:2011 (2011) Test for mechanical and physical properties of aggregates—part 5: determination of the water content by drying in a ventilated oven. Instituto Português da Qualidade, Caparica

  39. IPQ, NP EN 1097-7:2012 (2012) Determination of the particle density of filler—Pyknometer method. Instituto Português da Qualidade, Caparica

  40. IPQ, NP EN 196-6:2010 (2010) Methods of testing cement—part 6: determination of fineness. Instituto Português da Qualidade, Caparica

  41. IPQ, NP EN 196-2:2006 (2006) Methods of testing cement. Chemical analysis of cement. Instituto Português da Qualidade, Caparica

  42. IPQ, NP EN 933-9:2011 (2011) Tests for geometrical properties of aggregates—part 9: assessment of fines—methylene blue test. Instituto Português da Qualidade, Caparica

  43. IPQ, NP EN 1097-4:2012 (2012) Tests for mechanical and physical properties of aggregates—part 4: determination of the voids of dry compacted filler. Instituto Português da Qualidade, Caparica

  44. IPQ, NP EN 13179-2:2010 (2010) Tests for filler aggregate used in bituminous mixtures. Part 2: Bitumen number. Instituto Português da Qualidade, Caparica

  45. CEN, EN 1744-4:2005 (2005) Tests for chemical properties of aggregates. Part 4: determination of water susceptibility of filler for bituminous mixtures. European Committee for Standardization, Belgium.

  46. AFNOR, NF P 98-256-1 (2005) Tests relating to pavements—tests on constituants of bituminous mixtures—part 1: determination of fines particles absorbing capacity (in French). Association Française de Normalisation, France

  47. IPQ, NP EN 1427:2010 (2010) Bitumen and bituminous binders—determination of softening point: Ring and Ball method. Instituto Português da Qualidade, Caparica

  48. Hesami E, Birgisson B, Kringos N (2014) Numerical and experimental evaluation of the influence of the filler–bitumen interface in mastics. Mater Struct 47:1325–1337. https://doi.org/10.1617/s11527-013-0237-8

    Article  Google Scholar 

  49. Buttlar W, Bozkurt D, Al-Khateeb G, Waldhoff A (1999) Understanding asphalt mastic behavior through micromechanics. Transp Res Rec J Transp Res Board 1681:157–169. https://doi.org/10.3141/1681-19

    Article  Google Scholar 

  50. Antunes V, Freire AC, Quaresma L, Micaelo R (2015) Influence of the geometrical and physical properties of filler in the filler–bitumen interaction. Constr Build Mater 76:322–329. https://doi.org/10.1016/j.conbuildmat.2014.12.008

    Article  Google Scholar 

  51. Taylor R (2007) Surface interactions between bitumen and mineral fillers and their effects on the rheology of bitumen–filler mastics, PhD Thesis, University of Nottingham, UK

  52. Curtis CW, Ensley K, Epps J (1993) Fundamental properties of asphalt–aggregate interactions including adhesion and absorption. National Academy of Science, USA

    Google Scholar 

  53. Grenfell J, Apeagyei A, Airey G (2015) Moisture damage assessment using surface energy, bitumen stripping and the SATS moisture conditioning procedure. Int J Pavement Eng 16:411–431. https://doi.org/10.1080/10298436.2015.1007235

    Article  Google Scholar 

  54. Little D, Epps J (2006) The benefits of hydrated lime in hot mix asphalt (Updated version by Peter E. Sebaaly in 2006), 5th ed. National Lime Association, USA

  55. Clopotel C, Bahia H (2013) The effect of bitumen polar groups adsorption on mastics properties at low temperatures. Road Mater Pavement Des 14:38–51. https://doi.org/10.1080/14680629.2013.774745

    Article  Google Scholar 

  56. Hamedi GH, Nejad FM, Oveisi K (2016) Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Mater Struct 49:1165–1174. https://doi.org/10.1617/s11527-015-0566-x

    Article  Google Scholar 

  57. Apeagyei AK, Grenfell JRA, Airey GD (2014) Observation of reversible moisture damage in asphalt mixtures. Constr Build Mater 60:73–80. https://doi.org/10.1016/j.conbuildmat.2014.02.033

    Article  Google Scholar 

  58. Lesueur D, Little D (1999) Effect of hydrated lime on rheology, fracture, and aging of bitumen. Transp Res Rec J Transp Res Board 1661:93–105

    Article  Google Scholar 

  59. Matos P, Micaelo R, Duarte C, Quaresma L (2014) Influence of bitumen and filler on the selection of appropriate mixing and compaction temperatures. Int J Pavement Res Technol 7:237–246

    Google Scholar 

  60. Kandhal P (1981) Evaluation of baghouse fines in bituminous paving mixtures. J Assoc Asph Paving Technol 50:150–203

    Google Scholar 

  61. Sanders P, Nunn M (2005) The application of Enrobé à Module Elévé in flexible pavements, UK

  62. Grabowski W, Wilanowicz J (2008) The structure of mineral fillers and their stiffening properties in filler–bitumen mastics. Mater Struct 41:793–804. https://doi.org/10.1617/s11527-007-9283-4

    Article  Google Scholar 

  63. EP (2009) Construction specifications book. 15.03—Paving methods (in Portuguese), Estradas de Portugal, S.A., Almada, Portugal

  64. Zaumanis M, Mallick RB, Frank R (2014) 100% recycled hot mix asphalt: a review and analysis. Resour Conserv Recycl 92:230–245. https://doi.org/10.1016/j.resconrec.2014.07.007

    Article  Google Scholar 

  65. Quaresma L, Antunes M de L (2002) Granitic filler in bituminous mixtures (in Portuguese). National Laboratory for Civil Engineering, Portugal

    Google Scholar 

  66. Stafford FN, Dias AC, Arroja L, Labrincha JA, Hotza D (2016) Life cycle assessment of the production of Portland cement: a Southern Europe case study. J Clean Prod 126:159–165. https://doi.org/10.1016/j.jclepro.2016.02.110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Micaelo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, V., Freire, A.C., Quaresma, L. et al. Evaluation of waste materials as alternative sources of filler in asphalt mixtures. Mater Struct 50, 254 (2017). https://doi.org/10.1617/s11527-017-1126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1126-3

Keywords

Navigation