Skip to main content
Log in

Flexural reinforcement of glulam beams with CFRP plates

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In recent years the use of fiber reinforced polymer composites for strengthening and repairing structural elements has significantly increased. This paper shows an experimental study carried out in order to demonstrate the effective use of carbon fiber reinforced polymer (CFRP) plates as flexural reinforcement of glulam beams. Altogether 20 reinforced beams and 8 unreinforced control beams were tested up to failure in a four-point bending configuration. Three different reinforcement schemes were considered. The bending behaviour of beams was analysed through their load–deflection relationship, failure mode, ultimate load capacity, stiffness and strain profile distribution. The addition of CFRP reinforcement to tension zone of glulam beams resulted in improvement in the strength, stiffness as well as ductility. The distance of the CFRP plate from the centre of cross section proved to have a very high impact on the effect of reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ACI 440.2R-08 (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. American Concrete Institute, Farmington Hills

    Google Scholar 

  2. Alhayek H, Svecova D (2012) Flexural stiffness and strength of GFRP-reinforced timber beams. J Compos Constr 16(3):245–252. doi:10.1061/(ASCE)CC.1943-5614.0000261

    Article  Google Scholar 

  3. Andre A (2011) Benefits of strengthening timber with fibre-reinforced polymers. PhD thesis, Chalmers University of Technology, Gothenburg

  4. Borri A, Corradi M, Grazini A (2005) A method for flexural reinforcement of old wood beams with CFRP materials. Compos Part B-Eng 36(2):143–153. doi:10.1016/j.compositesb.2004.04.013

    Article  Google Scholar 

  5. Blaß HJ, Romani M (2000) Trag- und Verformungsverhalten von Verbundträgern aus Brettschichtholz und faserverstärkten Kunststoffen. Forschungsbericht der Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau der Universität Karlsruhe (in German)

  6. Buell TW, Saadatmanesh H (2005) Strengthening timber bridge beams using carbon fibre. J Struct Eng 131:173–187. doi:10.1061/(ASCE)0733-9445(2005)131:1(173)

    Article  Google Scholar 

  7. Carolin A (2003) Carbon fibre reinforced polymers for strengthening of structural elements. PhD thesis, Lulea University of Technology, Lulea

  8. CNR-DT 200/2004 (2004) Guide for design and construction of externally bonded FRP systems for strengthening existing structures—materials, RC and PC structures, masonry structures. Italian National Research Council, Rome

    Google Scholar 

  9. CNR-DT 201/2005 (2007) Guidelines for design and construction of externally bonded FRP systems for strengthening existing structures—timber structures. Italian National Research Council, Rome

    Google Scholar 

  10. D’Ambrisi A, Focacci F, Luciano R (2014) Experimental investigation on flexural behavior of timber beams repaired with CFRP plates. Compos Struct 108:720–728. doi:10.1016/j.compstruct.2013.10.005

    Article  Google Scholar 

  11. Davalos JF, Qiao PZ (2003) Fracture mechanics methods for interface bond evaluations of fiber-reinforced plastic/wood hybrid composites. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc., New York, pp 351–377

    Google Scholar 

  12. de Jesus AMP, Pinto JMT, Morais JJL (2012) Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Constr Build Mater 35:817–828. doi:10.1016/j.conbuildmat.2012.04.124

    Article  Google Scholar 

  13. EN 338 (2009) Structural timber—strength classes. European Committee for Standardization, Brussels

    Google Scholar 

  14. EN 384 (2010) Structural timber—determination of characteristic values of mechanical properties and density. European Committee for Standardization, Brussels

    Google Scholar 

  15. EN 408 (2010) Timber structures—structural timber and glued laminated timber—determination of some physical and mechanical properties. European Committee for Standardization, Brussels

    Google Scholar 

  16. EN ISO 527-5 (2009) Plastics—determination of tensile properties—Part 5: test conditions for unidirectional fibre-reinforced plastic composites. European Committee for Standardization, Brussels

    Google Scholar 

  17. Fiorelli J, Dias AA (2011) Glulam beams reinforced with FRP externally-bonded: theoretical and experimental evaluation. Mater Struct 44(8):1431–1440. doi:10.1617/s11527-011-9708-y

    Article  Google Scholar 

  18. Gentile CJ (2000) Flexural strengthening of timber bridge beams using FRP. MSc thesis, University of Manitoba, Winnipeg

  19. Gilfillan RJ, Gilbert SG, Patrick GRH (2003) The use of FRP composites in enhancing the structural behaviour of timber beams. J Reinf Plast Compos 22(15):1373–1388. doi:10.1177/073168403035583

    Article  Google Scholar 

  20. Hay S, Thiessen K, Svecova D, Bakht B (2006) Effectiveness of GFRP sheets for shear strengthening of timber. J Compos Constr 10(6):483–491. doi:10.1061/(ASCE)1090-0268(2006)10:6(483)

    Article  Google Scholar 

  21. Hernandez R, Davalos JF, Sonti SS, Kim Y, Moody RC (1997) Strength and stiffness of reinforced yellow-poplar glued-laminated beams. Research Paper FPL-RP-554, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison

  22. Jacob J, Barragan OLG (2010) Flexural strengthening of glued laminated timber beams with steel and carbon fiber reinforced polymers. MSc thesis, Chalmers University of Technology, Gothenburg

  23. Jankowski LJ, Jasienko J, Nowak TP (2010) Experimental assessment of CFRP reinforced wooden beams by 4-point bending tests and photoelastic coating technique. Mater Struct 43(1–2):141–150. doi:10.1617/s11527-009-9476-0

    Article  Google Scholar 

  24. Juvandes LFP, Barbosa RMT (2012) Bond analysis of timber structures strengthened with FRP Systems. Strain 48(2):124–135. doi:10.1111/j.1475-1305.2011.00804.x

    Article  Google Scholar 

  25. Johnsson H, Blanksvard T, Carolin A (2006) Glulam members strengthened by carbon fibre reinforcement. Mater Struct 40(1):47–56. doi:10.1617/s11527-006-9119-7

    Article  Google Scholar 

  26. Kim YJ, Hossain M, Harries KA (2013) CFRP strengthening of timber beams recovered from a 32 year old quonset: element and system level tests. Eng Struct 57:213–221. doi:10.1016/j.engstruct.2013.09.028

    Article  Google Scholar 

  27. Li YF, Xie YM, Tsai MJ (2009) Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr Build Mater 23(1):411–422. doi:10.1016/j.conbuildmat.2007.11.005

    Article  Google Scholar 

  28. Lopez-Anido RA, Muszynski L, Gardner DJ, Goodell B, Herzog B (2005) Performance-based material evaluation of fiber-reinforced polymer-wood interfaces in reinforced glulam members. J Test Eval 33(6):385–394. doi:10.1520/JTE12071

    Google Scholar 

  29. Micelli F, Scialpi V, La Tegola A (2005) Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. J Compos Constr 9(4):337–347. doi:10.1061/(ASCE)1090-0268(2005)9:4(337)

    Article  Google Scholar 

  30. Raftery GM, Harte AM, Rodd PD (2009) Bonding of FRP materials to wood using thin epoxy gluelines. Int J Adhes Adhes 29(5):580–588. doi:10.1016/j.ijadhadh.2009.01.004

    Article  Google Scholar 

  31. Raftery GM, Harte AM (2011) Low-grade glued laminated timber reinforced with FRP plate. Compos Part B-Eng 42(4):724–735. doi:10.1016/j.compositesb.2011.01.029

    Article  Google Scholar 

  32. Raftery GM, Whelan C (2014) Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Constr Build Mater 52:209–220. doi:10.1016/j.conbuildmat.2013.11.044

    Article  Google Scholar 

  33. Schober KU, Rautenstrauch K (2006) Post-strengthening of timber structures with CFRP’s. Mater Struct 40(1):27–35. doi:10.1617/s11527-006-9128-6

    Article  Google Scholar 

  34. Sena-Cruz J, Jorge M, Branco JM, Cunha VMCF (2013) Bond between gleam and NSM CFRP laminates. Constr Build Mater 40:260–269. doi:10.1016/j.conbuildmat.2012.09.089

    Article  Google Scholar 

  35. Sika Group (2011) Sika CarboDur: carbon fiber laminate for structural strengthening. Product data sheet. www.sika.com. Accessed 4 May 2011

  36. Sika Group (2014) Sikadur-30: high-modulus, high-strength, structural epoxy paste adhesive for use with Sika CarboDur reinforcement. Product data sheet. www.sika.com. Accessed 23 Sep 2014

  37. Sika Group (2014) Sikadur-330: high-modulus, high-strength, impregnating resin. Product data sheet. www.sika.com. Accessed 23 Sep 2014

  38. Svecova D, Eden RJ (2004) Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars—an experimental investigation. Can J Civil Eng 31(1):45–55. doi:10.1139/03-069

    Article  Google Scholar 

  39. Yusof A (2010) Bending behavior of timber beams strengthened using fiber reinforced polymer bars and plates. PhD thesis, Technology University of Malaysia, Skudai

  40. Zhou A, Tam L, Yu Z, Lau D (2015) Effect of moisture on the mechanical properties of CFRP-wood composite: an experimental and atomistic investigation. Compos Part B-Eng 71:63–73. doi:10.1016/j.compositesb.2014.10.051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Glišović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glišović, I., Stevanović, B. & Todorović, M. Flexural reinforcement of glulam beams with CFRP plates. Mater Struct 49, 2841–2855 (2016). https://doi.org/10.1617/s11527-015-0690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0690-7

Keywords

Navigation