Skip to main content
Log in

Comparative investigation on nanomechanical properties of hardened cement paste

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Three types of nanomechanical methods including static nanoindentation, modulus mapping and peak-force quantitative nanomechanical mapping (QNM) were applied to investigate the quantitative nanomechanical properties of the same indent location in hardened cement paste. Compared to the nanoindentation, modulus mapping and peak-force QNM allow for evaluating local mechanical properties of a smaller area with higher resolution. Beside, the ranges of elastic modulus distribution measured by modulus mapping and peak-force QNM are relatively greater than that obtained from nanoindentation, which may be due to a result of the shaper probe and local confinement effect between multiple phases. Moreover, the average value of elastic modulus obtained using peak-force QNM were consistent with those obtained by modulus mapping, while the different in modulus probability distribution could be related to the different nanomechancial theories and contact forces. The probability distributions of elastic modulus measured using nanomechanical methods to provide a basis for the different types of phases existing in cement paste. Based on the observation with high spatial resolution, cement paste can be likely found as nanocalse granular material, in which different submicron scale or basic nanoscale grain units pack together. It indicates that the peak-force QNM can effectively provide an effective insight into the nanostructure characteristic and corresponding nanomechanical properties of cement paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sobolev K, Shah SP. Nanotechnology of concrete: recent developments and future perspectives, American Concrete Institute, Detroit, SP-254, 2008

  2. Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38(2):128–136

    Article  Google Scholar 

  3. Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071

    Article  Google Scholar 

  4. Šavija B, Luković M, Hosseini SAS, Pacheco J, Schlangen E (2014) Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS). Mater Struct. doi:10.1617/s11527-014-0292-9

    Google Scholar 

  5. Mondal P, Shah SP, Marks LD (2008) Nanoscale characterization of cementitious materials. ACI Mater J 105(2):174–179

    Google Scholar 

  6. Trtik P, Kaufmann J, Volz U (2012) On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste. Cem Concr Res 42(1):215–221

    Article  Google Scholar 

  7. Jones CA, Grasley ZC, Ohlhausen JA (2012) Measurement of elastic properties of calcium silicate hydrate with atomic force microscopy. Cem Concr Compos 34(4):468–477

    Article  Google Scholar 

  8. Davydov D, Jirásek M, Kopecký L (2011) Critical aspects of nano-indentation technique in application to hardened cement paste. Cem Concr Res 41(1):20–29

    Article  Google Scholar 

  9. Sorelli L, Constantinides G, Ulm F-J, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38(12):1447–1456

    Article  Google Scholar 

  10. Wang XH, Jacobsen S, Lee SF, He JY, Zhang ZL (2010) Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar. Mater Struct 43(1–2):125–139

    Article  Google Scholar 

  11. Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90(3):1192–1200

    Article  Google Scholar 

  12. Balooch G, Marshall GW, Marshall SH, Warren OL, Asif SAS, Balooch M (2004) Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech 37(8):1223–1232

    Article  Google Scholar 

  13. Young TJ, Monclus MA, Burnett TL, Broughton WR, Ogin SL, Smith PA (2011) The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22(12):125703

    Article  Google Scholar 

  14. Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19(44):445717

    Article  Google Scholar 

  15. Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  16. Constantinides G, Ulm F, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36(3):191–196

    Article  Google Scholar 

  17. Constantinides G, Ulm F-J (2007) The nanogranular nature of C-S-H. J Mech Phys Solids 55(1):64–90

    Article  MATH  Google Scholar 

  18. Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two dimensional tool for mapping the mechanical properties of complex surfaces. J Mater Res 24(3):679–690

    Article  Google Scholar 

  19. Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J Eur Ceram Soc 27(2–3):1559–1564

    Article  Google Scholar 

  20. Vanlandingham MR, McKnight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie J (1997) Nanoscale indentation of polymer systems using the atomic force microscope. J Adhes 64(1–4):31–59

    Article  Google Scholar 

  21. Li WG, Xiao JZ, Kawashma S, Shekhawat GS, Shah SP (2014) Experimental investigation on quantitative nanomechanical properties of cement paste. ACI Mater J 111(1–6):603–612

    Google Scholar 

  22. Miller M, Bobko C, Vandamme M, Ulm F-J (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38(4):467–476

    Article  Google Scholar 

  23. Li WG, Xiao JZ, Sun ZH, Kawashima S, Shah SP (2012) Interfacial transition zones in recycled aggregate concrete with different mixing approaches. Constr Build Mater 35:1045–1055

    Article  Google Scholar 

  24. Xiao JZ, Li WG, Sun ZH, Lange DA, Shah SP (2013) Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem Concr Compos 37:276–292

    Article  Google Scholar 

  25. Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm F-J (2007) A multi-technique investigation of the nanoporosity of cement paste. Cem Concr Res 37(3):329–336

    Article  Google Scholar 

  26. Constantinides G, Ulm F-J (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80

    Article  Google Scholar 

  27. Vandamme M, Ulm F-J, Fonollosa P (2010) Nanogranular packing of C-S-H at substochiometric conditions. Cem Concr Res 40(1):14–26

    Article  Google Scholar 

  28. Němeček J, Králík V, Vondřejc J (2013) Micromechanical analysis of heterogeneous structural materials. Cem Concr Compos 36:85–92

    Article  Google Scholar 

  29. da Silva WRL, Němeček J, Štemberk P (2014) Methodology for nanoindentation-assisted prediction of macroscale elastic properties of high performance cementitious composites. Cem Concr Compos 45:57–68

    Article  Google Scholar 

  30. Alizadeh R, Beaudoin JJ, Raki LR (2011) Mechanical properties of calcium silicate hydrates. Mater Struct 44(1):13–28

    Article  Google Scholar 

  31. Fonseca PC, Jennings HM, Andrade JE (2011) A nanoscale numerical model of calcium silicate hydrate. Mech Mater 43(8):408–419

    Article  Google Scholar 

  32. Masoero E, Del Gado E, Pellenq RJ-M, Ulm F-J, Yip S (2012) Nanostructure and nanomechanics of cement: polydisperse colloidal packing. Phys Rev Lett 109(15):155503

    Article  Google Scholar 

  33. Kim JH, Balogun O, Shah SP (2010) Atomic force acoustic microscopy to measure nanoscale mechanical properties of cement pastes. J Transp Res Board 2141:102–108

    Article  Google Scholar 

  34. Brehm D (2012) Size diversity in cement nanoparticles optimizes packing density to give concrete its strength, Department of Civil and Environmental Engineering (CEE) in MIT. http://newsoffice.mit.edu/2012/size-diversity-in-cement-nanoparticles-optimizes-packing-density-to-give-concrete-its-strength

  35. Peled A, Castro J, Weiss J (2010) Atomic force microscopy examinations of mortar made by using water-filled lightweight aggregate. J Transp Res Board 2141(1):92–101

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the National Natural Science Foundation of China (51408210), the Fundamental Research Funds for the Central Universities in Hunan University, China (531107040800) and the financial support from Infrastructure Technology Institute (ITI) at Northwestern University, USA under Grant DTRT06-G-0015. The first author is also grateful for the financial support of the Australian Research Council (DE150101751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Kawashima, S., Xiao, J. et al. Comparative investigation on nanomechanical properties of hardened cement paste. Mater Struct 49, 1591–1604 (2016). https://doi.org/10.1617/s11527-015-0597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0597-3

Keywords

Navigation