Skip to main content
Log in

Bond behavior between steel reinforcement and recycled concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sánchez de Juan M (2005) Estudio sobre la Utilización de Árido Reciclado para la Fabricación de Hormigón Estructural. Thesis, E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid

  2. Ravindrarajah RS, Loo YH, Tam CT (1987) recycled concrete as fine and coarse aggregate in concrete. Mag Concr Res 39:214–220. ISSN: 00249831

    Google Scholar 

  3. Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742. doi:10.1016/j.cemconres.2007.02.002

    Article  Google Scholar 

  4. González-Fonteboa B, Martínez-Abella F (2008) Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build Environ 43:429–437. doi:10.1016/j.buildenv.2007.01.008

    Article  Google Scholar 

  5. Evangelista L, de Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregate. Cem Concr Compos 29:397–401. doi:10.1016/j.cemconcomp.2006.12.004

    Article  Google Scholar 

  6. Xiao J, Wenguil L, Yuhui F, Xiao H (2012) An overview of study on recycled aggregate concrete in China (1996–2011). Constr Build Mater 31:364–383. doi:10.1016/j.conbuildmat.2011.12.074

    Article  Google Scholar 

  7. Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem Concr Compos 24:269–279

    Article  Google Scholar 

  8. Jiménez JR, Ayuso J, Galvín AP, López M, Agrela F (2012) Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads. Constr Build Mater 34:34–43. doi:10.1016/j.conbuildmat.2012.02.042

    Article  Google Scholar 

  9. Pérez-Benedicto JA, del Río-Merino M, Peralta-Canudo JL, de la Rosa-La Mata M (2012) Mechanical characteristics of concrete with recycled aggregates coming from prefabricated discarded units. Mater Constr 62:25–37. doi:10.3989/mc.2011.62110

    Article  Google Scholar 

  10. Corinaldesi V, Moriconi G (2009) Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr Build Mater 23:2869–2876. doi:10.1016/j.conbuildmat.2009.02.004

    Article  Google Scholar 

  11. Butler L, West JS, Tighe SL (2011) The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem Concr Res 41:1037–1049. doi:10.1016/j.cemconres.2011.06.004

    Article  Google Scholar 

  12. Xiao J, Falkner H (2007) Bond behaviour between recycled aggregate concrete and steel rebars. Constr Build Mater 21:395–401. doi:10.1016/j.conbuildmat.2005.08.008

    Article  Google Scholar 

  13. Almeida Filho FM, El Debs MK, El Debs ALHC (2008) Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Mater Struct 41:1073–1089. doi:10.1617/s11527-007-9307-0

    Article  Google Scholar 

  14. Yalciner H, Eren O, Sensoy S (2012) An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cem Concr Res 42:643–655. doi:10.1016/j.cemconres.2012.01.003

    Article  Google Scholar 

  15. Foroughi-Asl A, Dilmaghani S, Famili H (2008) Bond strength of reinforcement steel in self-compacting concrete. Int J Civ Eng 6(1):24–33

    Google Scholar 

  16. Molina M, Gutiérrez JP, García MD (2004) Influencia del diámetro de la barra y del recubrimiento en las características adherentes del hormigón armado. Bol Soc Esp Ceram 43:560–564

    Article  Google Scholar 

  17. Fib Bulletin 10 (August 2000) Bond of reinforcement in concrete. State of the art report prepared by Task Group Bond Models, former CEB, Task Group 5.2, Lausanne, p. 427

  18. Eguchi K, Teranishi K, Nakagome A, Kishimoto H, Shinozaki K, Narikawa M (2007) Application of recycled coarse aggregate by mixture to concrete construction. Constr Build Mater 21:1542–1551. doi:10.1016/j.conbuildmat.2005.12.023

    Article  Google Scholar 

  19. Kim Y, Sim J, Park Cl (2012) Mechanical properties of recycled aggregate concrete with deformed steel re-bar. J Mar Sci Technol 20(3):274–280. ISSN:10232796

    Google Scholar 

  20. EHE-08 (2008) Spanish structural concrete code. Publicaciones del Ministerio de Fomento. Secretaría General Técnica, Madrid

  21. González-Fonteboa B, Martínez-Abella F, Herrador MF, Seara-Paz S (2012) Structural recycled concrete: behaviour under low loading rate. Constr Build Mater 28:111–116. doi:10.1016/j.conbuildmat.2011.08.010

    Article  Google Scholar 

  22. Sato R, Maruyama I, Sogabe T, Sogo M (2007) Flexural behaviour of reinforcement recycled concrete beams. J Adv Concr Technol 5(1):43–61

    Article  Google Scholar 

  23. González-Fonteboa B, Martínez-Abella F, Eiras-López J, Seara-Paz S (2011) Effect of recycled coarse aggregate on damage of recycled concrete. Mater Struct 44:1759–1771. doi:10.1617/s11527-011-9736-7

    Article  Google Scholar 

  24. RILEM TC9‐RC (1983). RC 6 Bond test for reinforcement steel. 2. Pull‐out test. RILEM recommendations for the testing and use of constructions materials, 1994, pp 18–220

  25. Faury J (1958) Le béton, 3ª edition. Dunod, Paris

  26. Dapena E, Alaejos P, Lobet A, Pérez D (2011) Effect of recycled sand content on characteristics of mortars and concretes. J Mater Civ Eng 23(4):414–422. doi:10.1061/(ASCE)MT.1943-5533.0000183

    Article  Google Scholar 

  27. López-Gayarre F, Serna P, Domingo-Cabo A, Serrano-López MA, López-Colina C (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. Waste Manag 29:3022–3028. doi:10.1016/j.wasman.2009.07.010

    Article  Google Scholar 

  28. Rahal K (2008) Mechanical properties of concrete with recycled coarse aggregate. Build Environ 42:407–415. doi:10.1016/j.buildenv.2005.07.033

    Article  Google Scholar 

  29. Sánchez de Juan M, Alaejos Gutiérrez P (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877. doi:10.1016/j.conbuildmat.2008.04.012

    Article  Google Scholar 

  30. Hansen TC, Narud H (1983) Strength of recycled concrete made from crushed concrete coarse aggregate. Concr Int 5:79–83

    Google Scholar 

  31. Nixon PJ (1987) Recycled concrete as an aggregate for concrete—a review. Mater Struct 65:371–378

    Google Scholar 

  32. Nealen A, Schenk S (1998) The influence of recycled aggregate core moisture on freshly mixed and hardened concrete properties. Darmstadt Concr 13. http://www.b-i-m.de/public/tudmassiv/dacon13nealenschenk.htm

  33. Vos I, Reinhardt H (1982) Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands. Mater Struct 15(1):3–10. doi:10.1007/BF02473553

    Google Scholar 

  34. Model Code 2010-Final draft (2012) The international federation for structural concrete, FIB. Bulletin No 52 Fib, 2; Lausanne

  35. Sagoe-Crentsil Brown T, Taylor AH (2001) Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem Concr Res 31:707–712

    Article  Google Scholar 

  36. Mas B, Cladera A, del Olmo T, Pitarch F (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr Build Mater 27:612–622. doi:10.1016/j.conbuildmat.2011.06.073

    Article  Google Scholar 

  37. Cairns J, Plizzari A (2003) Towards a harmonised European bond test. Mater Struct 36:498–506. ISSN 1359-5997/03

    Google Scholar 

  38. Khandaker M, Hossain A (2008) Bond characteristics of plain and deformed bars in lightweight pumice concrete. Constr Build Mater 22:1491–1499. doi:10.1016/j.conbuildmat.2007.03.025

    Article  Google Scholar 

  39. ACHE (2000) Armaduras pasivas en la Instrucción EHE. Comisión 2, Grupo de Trabajo 2/1—Armaduras, Monografía M-1

  40. Orangun CO (1977) Re-evaluation of test data on development length and splices. Proc ACI J 74:114–122

    Google Scholar 

  41. MacGregor JG (1997) Reinforced concrete, 3rd edn. Prentice-Hall, New Jersey, pp 290–301

    Google Scholar 

  42. ACI 318-08 (2008) Building code requirements for structural concrete and commentary. American Concrete Institute; Farmington Hills

  43. European Committee for Standardization—CEN (2004) Eurocode 2: design of concrete structures. Brussels

Download references

Acknowledgments

The study is part of two projects entitled:.

“Clean, efficient and nice construction along its life cycle (CLEAM)” funded by the Centre for the Technology and Industrial Development (CDTI) and led by the Group of Economical Interest CLEAM-CENIT, AIE comprising by the country’s largest construction companies (Acciona, Dragados, Ferrovial, FCC, Isolux Corsán, OHL and Sacyr) and some PYME (Informática 68, Quilosa and Martínez Segovia y asociados).

“Bond and anchorage of passive reinforcement steel in concrete (ADHAN)” funded by the Ministry of Science and Innovation.

The experimental program was carried out at the Construction laboratories of Technological Innovation Centre of Building and Civil Engineering (CITEEC) and Civil Engineering School, of A Coruña University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindy Seara-Paz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seara-Paz, S., González-Fonteboa, B., Eiras-López, J. et al. Bond behavior between steel reinforcement and recycled concrete. Mater Struct 47, 323–334 (2014). https://doi.org/10.1617/s11527-013-0063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0063-z

Keywords

Navigation