Skip to main content
Log in

Optimal reinforcement of RC columns for biaxial bending

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The Reinforcement Sizing Diagram (RSD) approach to determining optimal reinforcement for reinforced concrete beam and column sections subjected to uniaxial bending is extended to the case of biaxial bending. Conventional constraints on the distribution of longitudinal reinforcement are relaxed, leading to an infinite number of reinforcement solutions, from which the optimal solution and a corresponding quasi-optimal pragmatic is determined. First, all possibilities of reinforcement arrangements are considered for a biaxial loading, including symmetric and non-symmetric configurations, subject to the constraint that the reinforcement is located in a single layer near the circumference of the section. This theoretical approach establishes the context for obtaining pragmatic distributions of reinforcement that are more suitable for construction, in which distributions having double symmetry are considered. This contrasts with conventional approaches for the design of column reinforcement, in which a predetermined distribution of longitudinal reinforcement is assumed, even though such a distribution generally is non-optimal in any given design. Column and wall sections that are subjected to uniaxial or biaxial loading may be designed using this method. The solutions are displayed using a biaxial RSD and can be obtained with relatively simple algorithms implemented in widely accessible software programs such as Mathematica® and Excel®. Several examples illustrate the method and the savings in reinforcement that can be obtained relative to conventional solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A c :

Cross sectional area of concrete section

A s :

Area of bottom reinforcement

\( A^{\prime}_s\) :

Area of top reinforcement

A p :

Area of prestressing tendon

N :

Nominal axial strength

N d :

Design value of the applied axial force

M :

Bending moment applied at the center of gravity of the gross section

M d :

Design value of the applied bending moment

M x :

Flexural moment strength about x-axis

M xd :

Design value of the bending moment applied about the x-axis

M y :

Flexural moment strength about y-axis

M yd :

Design value of the bending moment applied about the x-axis

f ck :

Characteristic compressive strength of concrete

f yk :

Characteristic yield strength of reinforcement

s h :

Distance between centroids of consecutive bars of the top and bottom reinforcement

s v :

Distance between centroids of consecutive bars of side reinforcement

x :

Depth to neutral axis from top fiber of cross section

y :

Vertical coordinate measures from the center of gravity of the gross section

σ c :

Stress in concrete

σ p :

Stress in prestressing tendon

σ s :

Stress in bottom reinforcement

\( \sigma^{\prime}_s\) :

Stress in top reinforcement

ξ:

Intersection of the neutral axis with the y-axis

φ:

Angle of the neutral fiber

Φ:

Bar diameter

References

  1. Bresler B (1960) Design criteria for reinforced columns under axial load and biaxial bending. ACI Proc 57:481–490

    Google Scholar 

  2. Gouwens AJ (1975) Biaxial bending simplified, reinforced concrete columns, ACI Special Publication SP-50. American Concrete Institute, Detroit

  3. Marín J (1974) Resistencia de las secciones de concreto armado sometidas a flexo compresión: un método algorítmico general y sus aplicaciones en el diseño de columnas. tesis de Doctor de Ingeniería, Univeristy of Central Venezuela, Caracas

  4. Lepage-Rodríguez A (1991) Evaluación de métodos para el diseño de columnas rectangulares de concreto armado en flexión biaxial. tesis de Magister en Ingeniería Civil, Universidad Simón Bolívar, Caracas

  5. Furlong RW, Hsu C-TT, Mirza A (2004) Analysis and design of concrete columns for biaxial bending—overview. ACI Struct J 101(3):413–423

    Google Scholar 

  6. Leet KM, Bernal D (1996) Reinforced concrete design. McGraw-Hill, Blacklick

    Google Scholar 

  7. Lepš M, Šejnoha M (2003) New approach to optimization of reinforced concrete beams. Comput Struct 81(18–19):1957–1966

    Article  Google Scholar 

  8. Eurocode 2 (2002) Design of concrete structures—Part 1: General rules and rules for buildings prEN 1992-1-1 (July). European Committee for Standardization, Brussels

  9. Aschheim M, Hernández-Montes E, Gil-Martín LM (2008) Design of optimally reinforced RC beam, column and wall sections. J Struct Eng 134(2):169–188

    Article  Google Scholar 

  10. Pannell FN (1966) Design charts for members subjected to biaxial bending and trust. Concrete Publishing Ltd., London, 52 pp

  11. Beal AN, Pannell FN (1992) Simple design of multibar concrete columns. Struct Eng 70(23/24):434–435

    Google Scholar 

  12. Rafiq MY, Sothcombe C (1998) Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Int J Comput Struct 69:443–457

    Article  MATH  Google Scholar 

  13. Liu I-W (1998) An approximate resizing system for the preliminary design of reinforced concrete frames. Struct Optim 15:242–250

    Article  Google Scholar 

  14. PCAColumn, Version 3.6.4 (2005) Portland Cement Association, Skokie

  15. Wallace (1992) JBIAX-2: analysis of reinforced concrete and reinforced masonry sections. http://nisee.berkeley.edu/elibrary/getdoc?id=BIAX2ZIP. Accessed 16 Feb 2008

  16. Ehsani MR (1986) CAD for columns. Concr Int 8(9):43–47

    Google Scholar 

  17. Hernández-Montes E, Gil-Martín LM, Aschheim M (2005) The design of concrete members subjected to uniaxial bending and compression using reinforcement sizing diagrams. ACI Struct J 102(1):150–158

    Google Scholar 

  18. Aschheim M, Hernández-Montes E, Gil-Martín LM (2007) Optimal domains for strength design of rectangular sections for axial load and moment according to Eurocode 2. Eng Struct 29(8):1752–1760

    Article  Google Scholar 

  19. Lee HJ, Aschheim M, Hernández-Montes E, Gil-Martín LM (2009) Optimum RC column reinforcement considering multiple load combinations. Struct Multidiscip Optim 39(2):153–170

    Article  Google Scholar 

  20. Bonet JL, Romero ML, Fernández MA, Miguel PF (2007) Design method for slender columns subjected to biaxial bending based on second-order eccentricity. Mag Concr Res 59(1):3–19

    Article  Google Scholar 

  21. Collins MP, Mitchell D (1991) Prestressed concrete structures. Prentice Hall, New Jersey

    Google Scholar 

  22. Hernández-Montes E, Aschheim M, Gil-Martín LM (2004) The impact of optimal longitudinal reinforcement on the curvature ductility capacity of reinforced concrete column sections. Mag Concr Res 56(9):499–512

    Article  Google Scholar 

  23. Whitney CS, Cohen E (1956) Guide for ultimate strength design of reinforced concrete. ACI J 28(5):445–490 (proceedings vol 53)

    Google Scholar 

  24. MacGregor JG, Wight JK (2005) Reinforced concrete: mechanics and design, 4th edn. Pearson Prentice Hall, Upper Saddle River, p 525

    Google Scholar 

  25. Hernández-Montes E, Gil-Martín LM, Aschheim M (2010) Pilotes Asimétricos para contención de tierras. Revista de Obras Públicas (in press)

  26. Corres Peiretti H, Martínez Martínez JL, Pérez Caldentey A, López Agüí JC (2001) Prontuario Informático del Hormigón Estructural v. 30. IECA. www.ieca.es. Accessed 16 Feb 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa María Gil-Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil-Martín, L.M., Hernández-Montes, E. & Aschheim, M. Optimal reinforcement of RC columns for biaxial bending. Mater Struct 43, 1245–1256 (2010). https://doi.org/10.1617/s11527-009-9576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-009-9576-x

Keywords

Navigation