Skip to main content
Log in

On the cracking behaviour of the reinforced concrete tension chord under repeated loading

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

It is well known that repeated loads lead to increasing crack widths and deformations of reinforced concrete members. This is due to the progressive reduction of the parameters influencing the bond mechanism at the steel-concrete interface. However, current engineering methods employ severe simplifications to account for this influence, in particular to estimate values under permanent load. In this paper a model is presented to reproduce the distribution of longitudinal stresses and strains, bond stresses and relative slips along the crack spacing of a reinforced concrete tie with number of cycles. The model allows for a better understanding of the mechanical degradation sources affecting the evolution of tension-stiffening contribution. On the one hand, a cyclic degradation law is introduced to affect the local bond-slip behaviour. On the other hand, the mechanical damage of concrete is also introduced in the analysis. A parametric study is reported to show the role played by the different sources of degradation. Finally, the model capabilities are employed to analyse own experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A s :

Area of the rebar

A c,eff :

Effective concrete area

A c,eff,min :

Effective concrete area under minimum load

b :

Parameter to define the cyclic rate of the relative slip

c :

Parameter to define the cyclic degradation of the effective concrete area

E c :

Concrete modulus of deformation

E s :

Steel modulus of deformation

F :

Load

F cr :

Cracking load

F max :

Maximum load

F min :

Minimum load

f c :

Concrete compressive strength

f ct :

Concrete tensile strength

f C–Tct,res :

Residual tensile strength of concrete in a compression–tension fatigue test

f T–Tct,res :

Residual tensile strength of concrete in a tension–tension fatigue test

K :

Stiffness of the unloading and reloading branches of the bond-slip model

k N :

Increase of the slip due to N load cycles

l :

Width of the reinforced concrete tie

l b,unl :

Unloaded transfer length

m :

Tension-stiffening parameter

N :

Number of load cycles

n :

Ratio between modulus of elasticity of steel and concrete

s :

Relative slip between the concrete and the reinforcement

s 0 :

Static relative slip

s 1 :

Relative slip that corresponds to the bond strength

s red1 :

Relative slip that corresponds to the reduced bond strength

s 2 :

Relative slip that corresponds to the end of the horizontal line of the static bond-slip envelope

s 3 :

Relative slip that corresponds to the residual bond strength

s n :

Relative slip at the section halfway between cracks

s r :

Crack spacing

U s :

Perimeter of the rebar

w :

Crack width

w max :

Maximum crack width

w min :

Minimum crack width

x :

Distance from the section halfway between cracks to an arbitrarily chosen section

β2 :

Tension-stiffening parameter of EC2

β t :

Tension-stiffening parameter of MC90

ΔN :

Increment of the number of cycles

ε c :

Concrete strain

ε s :

Steel strain

εs,I :

Steel strain at state I

εs,II :

Steel strain at state II

εs,crack :

Steel strain at the crack

ε sm :

Average steel strain

ε cm :

Average concrete strain

Φ:

Diameter of the rebar

ρ:

Steel reinforcement ratio with respect to the effective concrete area

σ c :

Concrete stress

σ s :

Steel stress

σs,max :

Maximum steel stress at the crack

σs,min :

Minimum steel stress at the crack

τ :

Bond stress

τ f :

Negative frictional bond strength

τ red f :

Reduced negative frictional bond strength

τ max :

Bond stress under maximum load

References

  1. Balazs GL (1991) Fatigue of bond. ACI Mater J 88(6):620–629

    Google Scholar 

  2. Borosnyol A, Balazs GL (2005) Models for flexural cracking in concrete. The state of the art. Struct Concr 6(2):53–62. doi:10.1680/stco.6.2.53.66711

    Google Scholar 

  3. CEB (1988) CEB Bulletin d’information No. 188. Fatigue of concrete structures. State of the art report. Lausanne, Switzerland

    Google Scholar 

  4. CEB–FIP (1991) CEB–FIP Model Code 1990. Lausanne, Switzerland

  5. CEN (2004) Eurocode EC-2. prEN 1992-1-1:2004

  6. Ciampi V, Eligehausen R, Bertero VV et al (1982) Analytical model for concrete anchorages of reinforced bars under generalized excitations. UCB/EERC-82/83. Earthquake Engrg. Res. Ctr, University of California, Berkeley

    Google Scholar 

  7. Cornelissen HAW, Reinhardt HW (1984) Uniaxial tensile fatigue failure of concrete under constant amplitude and programme loading. Mag Concr Res 36(129):219–226

    Article  Google Scholar 

  8. Eligehausen R, Popov EP, Bertero VV (1983) Local bond stress-slip relationships of deformed bars under generalized excitations. UCB/EERC-83/19. Earthquake Engrg. Res. Ctr, University of California, Berkeley

    Google Scholar 

  9. FIB (2000) Bulletin 10. Bond of reinforcement in concrete. federation internationale du beton. Lausanne, Switzerland

    Google Scholar 

  10. Gómez Navarro M, Lebet J-P (2001) Concrete cracking in composite bridges: tests, models and design proposals. Struct Eng Int 11(3):184–190. doi:10.2749/101686601780346922

    Article  Google Scholar 

  11. Ichinose T, Kanayama Y, Inoue Y et al (2004) Size effect on bond strength of deformed bars. Constr Build Mater 18:549–558. doi:10.1016/j.conbuildmat.2004.03.014

    Article  Google Scholar 

  12. Koch R, Balazs GL (1993) Slip increase under cyclic and long term loads. Otto Graf J 4:160–191

    Google Scholar 

  13. Kreller H (1990) Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter Last- und Zwangeinwirkung. Deutscher Ausschuss für Stahlbeton. Heft 409, Universität Stuttgart

  14. Laurencet P (2000) Précontrainte et armature pour contrôler l’overture residuelle des fisures. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne

  15. Ministerio de Fomento (2008) Instrucción de Hormigón Estructural EHE 08. Madrid, Spain

  16. Morita S, Kaku T (1973) Local bond-stress relationship under repeated loading. IABSE Symposium, Resistance and ultimate deformability of structures acted on by well defined repeated loads. pp 221–226

  17. Muttoni A, Fernández Ruiz M (2007) Concrete cracking in tension members and application to deck slabs of bridges. J Bridge Eng 12(5):646–653. doi:10.1061/(ASCE)1084-0702(2007)12:5(646)

    Article  Google Scholar 

  18. Oh BH, Kim SH (2007) Realistic models for local bond stress-slip of reinforced concrete under repeated loading. J Struct Eng 133(2):216–224. doi:10.1061/(ASCE)0733-9445(2007)133:2(216)

    Article  Google Scholar 

  19. Park R, Paulay T (1975) Reinforced concrete structures. Wiley, New York

    Book  Google Scholar 

  20. Pochanart S, Harmon T (1989) Bond-slip model for generalized excitations including fatigue. ACI Mater J 86(5):465–474

    Google Scholar 

  21. Rehm G, Eligehausen R (1979) Bond of ribbed bars under high cycle repeated loads. ACI J 76(15):297–309

    Google Scholar 

  22. Sippel T (1996) Zum Trag- und Verformungsverhalten von Stahlbetontragwerken unter Betriebsbelastung. Ph.D. Thesis, Technische Universität Stuttgart

  23. Tassios TP, Yannopoulos PJ (1981) Analytical studies on reinforced concrete members under cyclic loading based on bond stress slip relations. ACI J 78(3):206–216

    Google Scholar 

  24. Zanuy C (2008) Análisis seccional de elementos de hormigón armados sometidos a fatiga, incluyendo secciones entre fisuras. Ph.D. Thesis, Universidad Politécnica de Madrid

  25. Zanuy C, de la Fuente P, Albajar L (2007) Effect of fatigue degradation of the compression zone of concrete in reinforced concrete sections. Eng Struct 29(11):2908–2920. doi:10.1016/j.engstruct.2007.01.030

    Article  Google Scholar 

Download references

Acknowledgement

Financial support provided by the Universidad Politécnica de Madrid (Spain) through the program for doctoral researchers is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Zanuy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanuy, C., Albajar, L. & de la Fuente, P. On the cracking behaviour of the reinforced concrete tension chord under repeated loading. Mater Struct 43, 611–632 (2010). https://doi.org/10.1617/s11527-009-9516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-009-9516-9

Keywords

Navigation