Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T22:08:20.871Z Has data issue: false hasContentIssue false

Herbicide-Resistant Weeds: Management Tactics and Practices

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

In input-intensive cropping systems around the world, farmers rarely proactively manage weeds to prevent or delay the selection for herbicide resistance. Farmers usually increase the adoption of integrated weed management practices only after herbicide resistance has evolved, although herbicides continue to be the dominant method of weed control. Intergroup herbicide resistance in various weed species has been the main impetus for changes in management practices and adoption of cropping systems that reduce selection for resistance. The effectiveness and adoption of herbicide and nonherbicide tactics and practices for the proactive and reactive management of herbicide-resistant (HR) weeds are reviewed. Herbicide tactics include sequences and rotations, mixtures, application rates, site-specific application, and use of HR crops. Nonherbicide weed-management practices or nonselective herbicides applied preplant or in crop, integrated with less-frequent selective herbicide use in diversified cropping systems, have mitigated the evolution, spread, and economic impact of HR weeds.

Type
Reviews
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10:570575.CrossRefGoogle Scholar
Anderson, M. P. and Gronwald, J. W. 1991. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione S-transferase activity. Plant Physiol. 96:104109.Google Scholar
Andrews, T. S. and Morrison, I. N. 1997. The persistence of trifluralin resistance in green foxtail (Setaria viridis) populations. Weed Technol. 11:369372.CrossRefGoogle Scholar
Andrews, T. S., Morrison, I. N., and Penner, G. A. 1998. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed Sci. 46:196199.Google Scholar
Anonymous. 2005. 2005 Guide to Crop Protection: Weeds, Plant Diseases, Insects. Bi-provincial publication. Regina, SK: Saskatchewan Agriculture, Food and Rural Revitalization; Winnipeg, MB: Manitoba Agriculture, Food and Rural Initiatives. 354 p.Google Scholar
Australian National Glyphosate Sustainability Working Group. 2005. Keeping Glyphosate Resistance Rare in Australian Cropping. Web page: http://www.weeds.crc.org.au/documents/glyphoste_risk_guide_colour.pdf. Accessed: 31 May 2005.Google Scholar
Beckie, H. J., Chang, F., and Stevenson, F. C. 1999a. The effect of labeling herbicides with their site of action: a Canadian perspective. Weed Technol. 13:655661.CrossRefGoogle Scholar
Beckie, H. J. and Gill, G. S. 2006. Strategies for managing herbicide-resistant weeds. in Singh, H. P., Batish, D. R., and Kohli, R. K., eds. Handbook of Sustainable Weed Management. Binghamton, NY: The Haworth Press, Inc. In press.Google Scholar
Beckie, H. J., Hall, L. M., Meers, S., Laslo, J. J., and Stevenson, F. C. 2004. Management practices influencing herbicide resistance in wild oat. Weed Technol. 18:853859.CrossRefGoogle Scholar
Beckie, H. J., Hall, L. M., and Schuba, B. 2005. Patch management of herbicide-resistant wild oat (Avena fatua). Weed Technol. 19:697705.Google Scholar
Beckie, H. J., Hall, L. M., and Tardif, F. J. 2001a. Herbicide resistance in Canada—where are we today?. in Blackshaw, R. E. and Hall, L. M., eds. Integrated Weed Management: Explore the Potential. Sainte-Anne-de-Bellevue, QC: Expert Committee on Weeds. Pp. 136.Google Scholar
Beckie, H. J., Hall, L. M., and Tardif, F. J. 2001b. Impact and management of herbicide-resistant weeds in Canada. Proc. Brighton Crop Protection Conference—Weeds. Farnham, UK: British Crop Protection Council. Pp. 747754.Google Scholar
Beckie, H. J., Hall, L. M., and Warwick, S. I. 2001c. Impact of herbicide-resistant crops as weeds in Canada. Proc. Brighton Crop Protection Conference—Weeds. Farnham, UK: British Crop Protection Council. Pp. 135142.Google Scholar
Beckie, H. J., Harker, K. N., Hall, L. M., Warwick, S. I., Légère, A., Sikkema, P. H., Clayton, G. W., Thomas, A. G., Leeson, J. Y., Séguin-Swartz, G., and Simard, M. J. 2006. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. (in press).CrossRefGoogle Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide resistance in weeds. Weed Technol. 14:428445.CrossRefGoogle Scholar
Beckie, H. J. and Holm, F. A. 2002. Response of wild oat (Avena fatua) to residual and non-residual herbicides in canola (Brassica napus) in western Canada. Can. J. Plant Sci. 82:797802.Google Scholar
Beckie, H. J. and Jana, S. 2000. Selecting for triallate resistance in wild oat. Can. J. Plant Sci. 80:665667.Google Scholar
Beckie, H. J. and Kirkland, K. J. 2003. Implication of reduced herbicide rates on resistance enrichment in wild oat (Avena fatua). Weed Technol. 17:138148.CrossRefGoogle Scholar
Beckie, H. J. and Morrison, I. N. 1993. Effective kill of trifluralin-susceptible and -resistant green foxtail (Setaria viridis). Weed Technol. 7:1522.Google Scholar
Beckie, H. J., Thomas, A. G., and Légère, A. 1999b. Nature, occurrence, and cost of herbicide-resistant green foxtail (Setaria viridis) across Saskatchewan ecoregions. Weed Technol. 13:626631.Google Scholar
Beckie, H. J., Thomas, A. G., Légère, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999c. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13:612625.Google Scholar
Beckie, H. J., Thomas, A. G., and Stevenson, F. C. 2002. Survey of herbicide-resistant wild oat (Avena fatua) in two townships in Saskatchewan. Can. J. Plant Sci. 82:463471.Google Scholar
Belles, D. S., Nissen, S., Ward, S., and Westra, P. 2005. Genetics and physiology of a dicamba resistance trait in kochia (Kochia scoparia). Weed Sci. Soc. Am. Abstr. 45:50.Google Scholar
Blackshaw, R. E., Molnar, L. J., Moyer, J. R., Harker, K. N., Clayton, G. W., and Beckie, H. J. 2004. Integration of cropping practices and herbicides for sustainable weed management. in Proc. Fourth International Weed Science Congress, Durban, S.A. Davis, CA: International Weed Science Society. P. 122.Google Scholar
Boerboom, C. M. 1999. Nonchemical options for delaying weed resistance to herbicides in Midwest cropping systems. Weed Technol. 13:636642.CrossRefGoogle Scholar
Bourgeois, L., Kenkel, N. C., and Morrison, I. N. 1997a. Characterization of cross-resistance patterns in acetyl-CoA carboxylase inhibitor resistant wild oat (Avena fatua). Weed Sci. 45:750755.Google Scholar
Bourgeois, L., Morrison, I. N., and Kelner, D. 1997b. Field and grower survey of ACCase resistant wild oat in Manitoba. Can. J. Plant Sci. 77:709715.Google Scholar
Boutsalis, P. and Powles, S. B. 1995. Resistance of dicot weeds to acetolactate synthase (ALS)–inhibiting herbicides in Australia. Weed Res. 35:149155.Google Scholar
Boutsalis, P. and Powles, S. B. 1998. Seedbank characteristics of herbicide-resistant and susceptible Sisymbrium orientale . Weed Res. 38:389395.Google Scholar
Bradley, K. W. and Hagood, E. S. Jr. 2001. Identification of a Johnsongrass (Sorghum halepense) biotype resistant to aryloxyphenoxypropionate and cyclohexanedione herbicides in Virginia. Weed Technol. 15:623627.Google Scholar
Bravin, F., Onofri, A., Zanin, G., and Sattin, M. 2004. Is malathion a useful tool to infer the chlorsulfuron-resistance mechanism in multi-resistant Italian populations of Lolium spp?. in Proc. Fourth International Weed Science Congress, Durban, S.A. Davis, CA: International Weed Science Society P. 52.Google Scholar
Burnet, M. W. M., Hildebrand, O. B., Holtum, J. A. M., and Powles, S. B. 1991. Amitrole, triazine, substituted urea, and metribuzin resistance in a biotype of rigid ryegrass (Lolium rigidum). Weed Sci. 39:317323.CrossRefGoogle Scholar
Burnet, M. W. M., Loveys, B. R., Holtum, J. A. M., and Powles, S. B. 1993a. Increased detoxification is a mechanism of simazine resistance in Lolium rigidum . Pestic. Biochem. Physiol. 46:207218.Google Scholar
Burnet, M. W. M., Loveys, B. R., Holtum, J. A. M., and Powles, S. B. 1993b. A mechanism of chlorotoluron resistance in Lolium rigidum . Planta 190:182189.CrossRefGoogle Scholar
Burnside, O. C. 1992. Rationale for developing herbicide-resistant crops. Weed Technol. 6:621625.CrossRefGoogle Scholar
Carey, V. F. III, Hoagland, R. E., and Talbert, R. E. 1995. Verification and distribution of propanil-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Technol. 9:366372.Google Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998. Herbicide resistance and gene flow in wild-oats (Avena fatua and Avena sterilis ssp. ludoviciana). Ann. Appl. Biol. 133:207217.CrossRefGoogle Scholar
Cavan, G., Cussans, J., and Moss, S. R. 1999. Modelling strategies to prevent resistance in black-grass (Alopecurus myosuroides). Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 777782.Google Scholar
Chandler, K., Shrestha, A., and Swanton, C. J. 2001. Weed seed return as influenced by the critical weed-free period and row spacing of no-till glyphosate-resistant soybean. Can. J. Plant Sci. 81:877880.Google Scholar
Chauvel, B. and Gasquez, J. 1994. Relationships between genetic polymorphism and herbicide resistance within Alopecurus myosuroides Huds. Heredity 72:336344.Google Scholar
Chauvel, B., Guillemin, J. P., Colbach, N., and Gasquez, J. 2001. Evaluation of cropping systems for management of herbicide-resistant populations of blackgrass (Alopecurus myosuroides Huds). Crop Prot. 20:127137.Google Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.CrossRefGoogle Scholar
Claude, J. P., Didier, A., Favier, P., and Thalinger, P. P. 2004. Development of a European database for the evolution follow-up of resistant black-grass (Alopecurus myosuroides Huds.) populations in cereal crops. in Proc. Fourth International Weed Science Congress, Durban, S.A. Davis, CA: International Weed Science Society. P. 48.Google Scholar
Cocker, K. M., Coleman, J. O. D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res. 40:323334.Google Scholar
Coleman, R. K., Gill, G. S., and Rebetzke, G. J. 2001. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L). Aust. J. Agric. Res. 52:12351246.CrossRefGoogle Scholar
Coupland, D. 1994. Resistance to the auxin analog herbicides. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. Pp. 171214.Google Scholar
Coupland, D., Lutman, P. J. W., and Heath, C. 1990. Uptake, translocation and metabolism of mecaprop in a sensitive and resistant biotype of Stellaria media . Pestic. Biochem. Physiol. 36:6167.Google Scholar
Cranston, H. J., Kern, A. J., Hackett, J. L., Miller, E. K., Maxwell, B. D., and Dyer, W. E. 2001. Dicamba resistance in kochia. Weed Sci. 49:164170.CrossRefGoogle Scholar
Cummins, I., Moss, S. R., Cole, J. D., and Edwards, R. 1997. Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pestic. Sci. 51:244250.Google Scholar
Dabaan, M. E. and Garbutt, K. 1997. Herbicide cross-resistance in atrazine-resistant velvetleaf (Abutilon theophrasti) and redroot pigweed (Amaranthus retroflexus). in Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 505510.Google Scholar
Daou, H. and Talbert, R. E. 1999. Control of propanil-resistant barnyardgrass (Echinochloa crus-galli) in rice (Oryza sativa) with carbaryl/propanil mixtures. Weed Technol. 13:6570.Google Scholar
Dauer, J. T. and Mortensen, D. A. 2005. Long-distance wind dispersal of Conyza canadensis and management implications. in Bàrberi, P. et al. (eds.). Proc. 13th European Weed Research Society Symposium, Bari, Italy.Google Scholar
De Prado, R. A. and Franco, A. R. 2004. Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Sci. 52:441447.Google Scholar
De Prado, R., López-Martínez, N., and Gonzalez-Gutierrez, J. 1999. Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pestic. Biochem. Physiol. 67:114124.Google Scholar
Debreuil, D. J., Friesen, L. F., and Morrison, I. N. 1996. Growth and seed return of auxin-type herbicide resistant wild mustard (Brassica kaber) in wheat. Weed Sci. 44:871878.Google Scholar
Dellow, J. J., Incerti, M., Britton, R., and Bishop, A. 1997. Herbicide resistance extension strategy for the south eastern wheat belt of New South Wales, Australia. in Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 487492.Google Scholar
Délye, C., Matéjicek, A., and Gasquez, J. 2002. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manage. Sci. 58:474478.Google Scholar
Délye, C. and Michel, S. 2005. ‘Universal’ primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Res. 45:323330.Google Scholar
Délye, C., Straub, C., Matéjicek, A., and Michel, S. 2003. Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase. Pest Manage. Sci. 60:3541.Google Scholar
Devine, M. D. and Buth, J. L. 2001. Advantages of genetically modified canola: a Canadian perspective. Proc. Brighton Crop Prot. Conf.— Weeds. Farnham, UK: British Crop Protection Council. Pp. 367372.Google Scholar
Diggle, A. J. and Neve, P. 2001. The population dynamics and genetics of herbicide resistance—a modeling approach. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York: CRC Press. Pp. 6199.Google Scholar
Diggle, A. J., Neve, P. B., and Smith, F. P. 2003. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 43:371382.CrossRefGoogle Scholar
Dinelli, G., Bonetti, A., and Catizone, P. 2000. Investigation on biodiversity of Italian Lolium spp. populations susceptible and resistant to herbicides. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. P. 146.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci. 41:1822.CrossRefGoogle Scholar
Dyer, W. E., Jasieniuk, M. A., and Maxwell, B. D. 2000. Stress tolerance in Kochia scoparia L.: phenotypic plasticity or genetic adaptation?. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. Pp. 147148.Google Scholar
Fischer, A. J., Bayer, D. E., Carriere, M. D., Ateh, C. M., and Yim, K. O. 2000. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 68:156165.CrossRefGoogle Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.CrossRefGoogle Scholar
Fraga, M. I. and Tasende, M. G. 2003. Mechanism of resistance to simazine in Sonchus oleraceus . Weed Res. 43:333340.CrossRefGoogle Scholar
Friesen, L. F., Jones, T. L., Van Acker, R. C., and Morrison, I. N. 2000. Identification of Avena fatua populations resistant to imazamethabenz, flamprop, and fenoxaprop-P. Weed Sci. 48:532540.CrossRefGoogle Scholar
Gadamski, G., Ciarka, D., Gressel, J., and Gawronski, S. W. 2000. Negative cross-resistance in triazine-resistant biotypes of Echinochloa crus-galli and Conzya canadensis . Weed Sci. 48:176180.Google Scholar
Gardner, S. N., Gressel, J., and Mangel, M. 1998. A revolving dose strategy to delay the evolution of both quantitative vs major monogene resistances to pesticides and drugs. Int. J. Pest Manag. 44:161180.Google Scholar
Gealy, D. R., Mitten, D. H., and Rutger, J. N. 2003. Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol. 17:627645.CrossRefGoogle Scholar
Gill, G. S. 1995. Development of herbicide resistance in annual ryegrass populations (Lolium rigidum Gaud.) in the cropping belt of Western Australia. Aust. J. Exp. Agric. 35:6772.Google Scholar
Gill, G. S. 1996. Management of herbicide resistant ryegrass in Western Australia—research and its adoption. in Shepherd, R.C.H., ed. Proc. 11th Aust. Weeds Conf. Melbourne, Australia: Weed Science Society of Victoria. Pp. 542545.Google Scholar
Gill, G. S. 1997. Prevention and control of herbicide resistant weeds in Australia. in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. London: Kluwer Academic. Pp. 305313.Google Scholar
Gill, G. S. and Holmes, J. E. 1997. Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum . Pestic. Sci. 51:352358.Google Scholar
Gorddard, R. J., Pannell, D. J., and Hertzler, G. 1996. Economic evaluation of strategies for management of herbicide resistance. Agric. Syst. 51:281298.CrossRefGoogle Scholar
Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5:4982.Google Scholar
Gressel, J. 1995. Creeping resistances: the outcome of using marginally-effective or reduced rates of herbicides. Proc. Brighton Crop Prot. Conf.— Weeds. Farnham, UK: British Crop Protection Council. Pp. 587590.Google Scholar
Gressel, J. 1997. Burgeoning resistance requires new strategies. in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. London: Kluwer Academic. Pp. 314.Google Scholar
Gressel, J. 1999. Modern herbicide design can lead to obsolescence via resistance. Weed Sci. Soc. Am. Abstr. 39:7677.Google Scholar
Gressel, J. 2002. Molecular Biology of Weed Control. New York: Taylor & Francis. 504 p.Google Scholar
Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. New York: Wiley. Pp. 325347.Google Scholar
Hall, L. M., Holtum, J. A. M., and Powles, S. B. 1994. Mechanisms responsible for cross resistance and multiple resistance. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. Pp. 243261.Google Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegilops cylindrica). Weed Technol. 19:674682.Google Scholar
Hartmann, F., Lánszki, I., Szentey, L., and Tóth, A. 2000. Resistant weed biotypes in Hungary. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. P. 138.Google Scholar
Hashem, A., Bowran, D., Piper, T., and Dhammu, H. 2001a. Resistance of wild radish (Raphanus raphanistrum) to acetolactate synthase-inhibiting herbicides in the Western Australia wheat belt. Weed Technol. 15:6874.Google Scholar
Hashem, A., Dhammu, H. S., Powles, S. B., Bowran, D. G., Piper, T. J., and Cheam, A. H. 2001b. Triazine resistance in a biotype of wild radish (Raphanus raphanistrum) in Australia. Weed Technol. 15:636641.Google Scholar
Hawthorn-Jackson, D., Davidson, R., and Preston, C. 2003. The spread of herbicide resistant annual ryegrass pollen. Weed Sci Soc. Am. Abstr. 43:76.Google Scholar
Heap, I. M. 1999. International survey of herbicide-resistant weeds: lessons and limitations. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 769776.Google Scholar
Heap, I. M. 2005. International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.org. Accessed: 2 May 2005.Google Scholar
Heap, I. and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci. 48:156157.Google Scholar
Hidayat, I., Baker, J., and Preston, C. 2004. Evolution and spread of herbicide resistant barley-grass in South Australia. Weed Sci. Soc. Am. Abstr. 44:67.Google Scholar
Hidayat, I. and Preston, C. 2001. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis . Pestic. Biochem. Physiol. 71:190195.Google Scholar
Holt, J. S., Powles, S. B., and Holtum, J. A. M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:203229.Google Scholar
Holt, J. S. and Thill, D. C. 1994. Growth and productivity of resistant plants. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. Pp. 299316.Google Scholar
Itoh, K., Wang, G. X., and Ohba, S. 1999. Sulfonylurea resistance in Lindernia micrantha, an annual paddy weed in Japan. Weed Res. 39:413423.Google Scholar
James, C. 2003. Preview: Global Status of Commercialized Transgenic Crops: 2003. ISAAA Briefs No. 30. Ithaca, NY: ISAAA. Web page: http://www.isaaa.org. Accessed: 6 June 2005.Google Scholar
James, C. 2004. Preview: Global Status of Commercialized Biotech/GM Crops: 2004. ISAAA Briefs No. 32. Ithaca, NY: ISAAA. Web page: http://www.isaaa.org. Accessed: 6 June 2005.Google Scholar
Jasieniuk, M., Bruŭlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Jasieniuk, M., Morrison, I. N., and Bruŭlé-Babel, A. L. 1995. Inheritance of dicamba resistance in wild mustard (Brassica kaber). Weed Sci. 43:192195.Google Scholar
Jordon, N., Kelrick, M., Brooks, J., and Kinerk, W. 1999. Biorational management tactics to select against triazine-resistant Amaranthus hybridus: a field trial. J. Appl. Ecol. 36:123132.Google Scholar
Kaundun, S. S. and Windass, J. 2004. Derived CAPS: a simple method to detect a critical point mutation in the ACCase target gene conferring graminicide resistance in monocot weeds. in Proc. Fourth International Weed Science Congress, Durban, S.A. Davis, CA: International Weed Science Society. P. 50.Google Scholar
Kemp, M. S., Moss, S. R., and Thomas, T. H. 1990. Herbicide resistance in Alopecurus myosuroides . in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. Washington, DC: American Chemical Society. Pp. 376393.Google Scholar
Kremer, E. and Lotz, L. A. P. 1998. Germination and emergence characteristics of triazine-susceptible and triazine-resistant biotypes of Solanum nigrum . J. Appl. Ecol. 35:302310.Google Scholar
Kudsk, P., Mathiassen, S. K., and Cotterman, J. C. 1995. Sulfonylurea resistance in Stellaria media [L.] Vill. Weed Res. 35:1924.Google Scholar
Kulshrestha, G., Singh, S. B., and Yaduraju, N. T. 1999. Mechanism of isoproturon resistance: the metabolism of isoproturon in susceptible and resistant biotypes of Phalaris minor . Proc. Brighton Crop Prot. Conf.— Weeds. Farnham, UK: British Crop Protection Council. Pp. 167172.Google Scholar
LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops. in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. Washington, DC: American Chemical Society. Pp. 336352.Google Scholar
Leeson, J. Y., Thomas, A. G., Beckie, H. J., Van Acker, R. C., and Andrews, T. 2004. Do Manitoba producers reduce in-crop herbicide rates?. Proc. 2003 National Mtg. Sainte-Anne-de-Bellevue, QC: Canadian Weed Science Society. P. 89. Web page: http://www.cwss-scm.ca. Accessed: 31 May 2005.Google Scholar
Leeson, J. Y., Thomas, A. G., Brenzil, C. A., and Beckie, H. J. 2006. Do Saskatchewan producers reduce in-crop herbicide rates?. Proc. 2004 National Mtg. Sainte-Anne-de-Bellevue, QC: Canadian Weed Science Society. In press.Google Scholar
Légère, A., Beckie, H. J., Stevenson, F. C., and Thomas, A. G. 2000. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. Weed Technol. 14:366376.Google Scholar
Letouzé, A. and Gasquez, J. 1999. A pollen test to detect ACCase target-site resistance within Alopecurus myosuroides populations. Weed Res. 40:151162.CrossRefGoogle Scholar
Letouzé, A. and Gasquez, J. 2001. Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theor. Appl. Genet. 103:288296.Google Scholar
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides Huds). Agronomie 23:601608.Google Scholar
Li, C., Yeh, F. C., Morrison, I. N., and Andrews, T. S. 2000. Tracing the movement of herbicide resistance in fields infested with Setaria viridis L. using amplified fragment length polymorphisms. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. P. 144.Google Scholar
Little, R. and Tardif, F. J. 2005. Combinations of herbicides at reduced rates for the prevention of herbicide resistance. Weed Sci. Soc. Am. Abstr. 45:111.Google Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2002. Resistance and the herbicide resource: perceptions of Western Australian grain growers. Crop Prot. 21:10671075.CrossRefGoogle Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2004. Grain grower perceptions and use of integrated weed management. Aust. J. Exp. Agric. 44:9931001.Google Scholar
Llewellyn, R. S. and Powles, S. B. 2001. High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of Western Australia. Weed Technol. 15:242248.Google Scholar
Malik, R. K., Gill, G., and Hobbs, P. R. 1998. Herbicide Resistance—A Major Issue for Sustainable Wheat Productivity in Rice–Wheat Cropping Systems in the Indo-Gangetic Plains. Rice–Wheat Consortium Paper Series 3. New Delhi, India: Rice–Wheat Consortium for the Indo-Gangetic Plains. 36 p.Google Scholar
Malik, R. K. and Singh, S. 1995. Littleseed canarygrass (Phalaris minor) resistance to isoproturon in India. Weed Technol. 9:419425.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17:605619.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Stallings, G. P. 1993. Survey and gene flow in acetolactate synthase resistant kochia and Russian thistle. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 555558.Google Scholar
Maneechote, C., Preston, C., and Powles, S. B. 1997. A diclofop-methyl-resistant Avena sterilis biotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhanced metabolism of diclofop-methyl. Pestic. Sci. 49:105114.3.0.CO;2-3>CrossRefGoogle Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1998. Characterization of imidazolinone-resistant smooth pigweed (Amaranthus hybridus). Weed Technol. 12:575584.Google Scholar
Mansooji, A. M., Holtum, J. A., Boutsalis, P., Matthews, J. M., and Powles, S. B. 1992. Resistance to aryloxyphenoxypropionate herbicides in two wild oat species (Avena fatua and Avena sterilis ssp. ludoviciana). Weed Sci. 40:599605.Google Scholar
Marshall, R. and Moss, S. 2004. Resistance to acetolactate inhibiting herbicides in UK black-grass (Alopecurus myosuroides) populations. Weed Sci. Soc. Am. Abstr. 44:15.Google Scholar
Matthews, J. M. 1994. Management of herbicide resistant weed populations. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. Pp. 317335.Google Scholar
Matthews, J. M. and Powles, S. B. 1992. Aspects of the population dynamics of selection for herbicide resistance in Lolium rigidum (Gaud). in Combellack, J. H., Levick, K. J., Parsons, J., and Richardson, R. G., eds. Proc. First International Weed Control Congress, Melbourne, Australia. Corvallis, OR: International Weed Science Society. Pp. 318320.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. Pp. 125.Google Scholar
Medd, R. W., Auld, B. A., Kemp, D. R., and Murison, R. D. 1987. The influence of wheat density and spatial arrangement on annual ryegrass, Lolium rigidum Gaudin, competition. Aust. J. Agric. Res. 36:361371.Google Scholar
Menendez, J. and De Prado, R. 1996. Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pestic. Biochem. Physiol. 56:123133.Google Scholar
Monjardino, M., Pannell, D. J., and Powles, S. B. 2003. Multispecies resistance and integrated management: a bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Weed Sci. 51:798809.Google Scholar
Monjardino, M., Pannell, D. J., and Powles, S. B. 2004. The economic value of haying and green manuring in the integrated management of annual ryegrass and wild radish in a Western Australian farming system. Aust. J. Exp. Agric. 44:11951203.Google Scholar
Morrison, I. N. and Friesen, L. F. 1996. Herbicide resistant weeds: mutation, selection, misconception. in Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 19.Google Scholar
Moss, S. R. 1997. Strategies for the prevention and control of herbicide resistance in annual grass weeds. in De Prado, R., Jorrín, J., and García-Torres, L. eds. Weed and Crop Resistance to Herbicides. London: Kluwer Academic. Pp. 283290.Google Scholar
Moss, S. R. 2002. Herbicide-resistant weeds. in Naylor, R.E.L., ed. Weed Management Handbook. British Crop Protection Council. Oxford, UK: Blackwell Science. Pp. 225252.Google Scholar
Moss, S. R., Cocker, K. M., Brown, A. C., Hall, L., and Field, L. M. 2003. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manage. Sci. 59:190201.Google Scholar
Murray, B. G., Bruŭlé-Babel, A. L., and Morrison, I. N. 1996. Two distinct alleles encode for acetyl-CoA carboxylase inhibitor resistance in wild oat (Avena fatua). Weed Sci. 44:476481.CrossRefGoogle Scholar
Nazarko, O. M., Van Acker, R. C., and Entz, M. H. 2005. Strategies and tactics for herbicide use reduction in field crops in Canada: A review. Can. J. Plant Sci. 85:457479.Google Scholar
Neve, P. and Powles, S. 2005a. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum . Theor. App. Genet. 110:11541166.Google Scholar
Neve, P. and Powles, S. 2005b. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity 95:485492.Google Scholar
Norsworthy, J. K., Rutledge, J. S., Talbert, R. E., and Hoagland, R. E. 1999a. Agrichemical interactions with propanil on propanil-resistant barnyardgrass (Echinochloa crus-galli). Weed Technol. 13:296302.CrossRefGoogle Scholar
Norsworthy, J. K., Talbert, R. E., and Hoagland, R. E. 1999b. Chlorophyll fluorescence evaluation of agrochemical interactions with propanil on propanil-resistant barnyardgrass (Echinochloa crus-galli). Weed Sci. 47:1319.Google Scholar
O'Donovan, J. T., Newman, J. C., Blackshaw, R. E., Harker, K. N., Derksen, D. A., and Thomas, A. G. 1999. Growth, competitiveness, and seed germination of triallate/difenzoquat-susceptible and -resistant wild oat populations. Can. J. Plant Sci. 79:303312.Google Scholar
Ominski, P. D., Entz, M. H., and Kenkel, N. 1999. Weed suppression by Medicago sativa in subsequent cereal crops: a comparative survey. Weed Sci. 47:282290.Google Scholar
Orson, J. H. 1999. The cost to the farmer of herbicide resistance. Weed Technol. 13:607611.Google Scholar
Orson, J. H. and Livingston, D. B. F. 1987. Field trials on the efficacy of herbicides on resistant black-grass (Alopecurus myosuroides) in different cultivation regimes. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 887894.Google Scholar
Owen, M. D. K. 2001a. Importance of weed population shifts and herbicide resistance in the Midwest USA corn belt. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 407412.Google Scholar
Owen, M. D. K. 2001b. World maize/soybean and herbicide resistance. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York: CRC Press. Pp. 101163.Google Scholar
Pannell, D. J., Stewart, V., Bennett, A., Monjardino, M., Schmidt, C., and Powles, S. B. 2004. RIM: a bioeconomic model for integrated weed management of Lolium rigidum in Western Australia. Agric. Syst. 79:305325.Google Scholar
Park, K. W., Fandrich, L., and Mallory-Smith, C. A. 2004. Absorption, translocation, and metabolism of propoxycarbazone-sodium in ALS-inhibitor resistant Bromus tectorum biotypes. Pestic. Biochem. Physiol. 79:1824.Google Scholar
Parks, R. J., Curran, W. S., Roth, G. W., Hartwig, N. L., and Calvin, D. D. 1996. Herbicide susceptibility and biological fitness of triazine-resistant and susceptible common lambsquarters (Chenopodium album). Weed Sci. 44:517522.Google Scholar
Pearce, G. A. and Holmes, J. E. 1976. The control of annual ryegrass. J. Agric. West. Aust. 17:7781.Google Scholar
Pest Management Regulatory Agency (PMRA). 1999. Voluntary Pesticide Resistance-Management Labelling Based on Target Site/Mode of Action. Publ. Regulatory Directive DIR99-06. Ottawa, ON: Health Canada. 24 p. Web page: http://www.hc-sc.gc.ca/pmra-arla/english/pubs/dir-e.html. Accessed 21 May 2005.Google Scholar
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol. 13:632635.Google Scholar
Poston, D. H., Wu, J., Hatzios, K. K., and Wilson, H. P. 2001. Enhanced sensitivity to cloransulam-methyl in imidazolinone-resistant smooth pigweed. Weed Sci. 49:711716.Google Scholar
Powles, S. B. 1997. Success from adversity: herbicide resistance can drive changes to sustainable weed management systems. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 11191126.Google Scholar
Powles, S. B. and Matthews, J. M. 1996. Integrated weed management for the control of herbicide-resistant annual ryegrass (Lolium rigidum). in Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 407414.Google Scholar
Powles, S. B., Monjardino, M., Llewellyn, R., and Pannell, D. 2000. Proactive versus reactive herbicide resistance management: understanding the economic sense of herbicide conservation versus exploitation. in Légére, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. Pp. 148149.Google Scholar
Powles, S. B., Preston, C., Bryan, I. B., and Jutsum, A. R. 1997. Herbicide resistance: impact and management. Adv. Agron. 58:5793.Google Scholar
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: complications for management. Weed Sci. 52:448453.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York: CRC Press. Pp. 2360.Google Scholar
Preston, C. and Powles, S. B. 2002a. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.Google Scholar
Preston, C. and Powles, S. B. 2002b. Mechanisms of multiple herbicide resistance in Lolium rigidum . in Clark, J. M. and Yamaguchi, I., eds. Agrochemical Resistance: Extent, Mechanism, and Detection. ACS Symposium Series No. 808. Washington, DC: American Chemical Society. Pp. 150160.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol. 54:123134.Google Scholar
Putwain, P. D. 1982. Herbicide resistance in weeds—an inevitable consequence of herbicide use?. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 719728.Google Scholar
Radosevich, S., Holt, J., and Ghersa, C. 1997. Genetics and evolution of weeds. in Radosevich, S., Holt, J., and Ghersa, C., eds. Weed Ecology: Implications for Management. 2nd ed. New York: Wiley. Pp. 69102.Google Scholar
Riches, C. R., Knights, J. S., Chaves, L., Caseley, J. C., and Valverde, B. E. 1997. The role of pendimethalin in the integrated management of propanil-resistant Echinochloa colona in Central America. Pestic. Sci. 51:341346.Google Scholar
Richter, J. and Powles, S. B. 1993. Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum). Plant Physiol. 102:10371041.Google Scholar
Rieger, M. A., Stone, L., and Preston, C. 2001. Herbicide resistant gene movement on a landscape scale with Lactuca serriola . Weed Sci. Soc. Am. Abstr. 41:125.Google Scholar
Ritter, R. L. and Menbere, H. 1997. Distribution and management of triazine-resistant weeds in the Mid-Atlantic region of the U.S.A. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 11471152.Google Scholar
Rotteveel, T. J. W., de Goeij, J. W. F. M., and van Gemerden, A. F. 1997. Towards the construction of a resistance risk evaluation scheme. Pestic. Sci. 51:407411.Google Scholar
Rubin, B. 1991. Herbicide resistance in weeds and crops, progress and prospects. in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, U.K.: Butterworth-Heinemann. Pp. 387414.Google Scholar
Sabba, R. P., Ray, I. M., Lownds, N., and Sterling, T. M. 2003. Inheritance of resistance to clopyralid and picloram in yellow starthistle (Centaurea solstitialis L.) is controlled by a single nuclear recessive gene. J. Hered. 94:523527.Google Scholar
Sattin, M., Gasparetto, M. A., and Campagna, C. 2001. Situation and management of Avena sterilis ssp ludoviciana and Phalaris paradoxa resistant to ACCase inhibitors in Italy. Proc. Brighton Crop Prot. Conf.— Weeds. Farnham, UK: British Crop Protection Council. Pp. 755762.Google Scholar
Schmidt, L. A., Talbert, R. E., and McClelland, M. 2004. Management of acetolactate synthase (ALS)-resistant common cockebur (Xanthium strumarium) in soybean. Weed Technol. 18:665674.Google Scholar
Seefeldt, S. S., Gealy, D. R., Brewster, B. D., and Fuerst, E. P. 1994. Cross-resistance of several diclofop-resistant wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci. 42:430437.Google Scholar
Seefeldt, S. S., Zemetra, R., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci. 46:632634.Google Scholar
Shaner, D. L., Feist, D. A., and Retzinger, E. J. 1997. SAMOA: one company's approach to herbicide-resistant weed management. Pestic. Sci. 51:367370.Google Scholar
Shaner, D. L., Howard, S., and Chalmers, I. 1999. Effectiveness of mode of action labelling for resistance management: a survey of Australian farmers. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. Pp. 797802.Google Scholar
Shirtliffe, S. J. and Entz, M. H. 2005. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 53:465470.Google Scholar
Sibony, M. and Rubin, B. 2003. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Planta 216:10221027.Google Scholar
Siminszky, B., Coleman, N. P., and Naveed, M. 2005. Denaturing high-performance liquid chromatography efficiently detects mutations of the acetolactate synthase gene. Weed Sci. 53:146152.Google Scholar
Singh, S., Kirkwood, R. C., and Marshall, G. 1998. Effect of the monooxygenase inhibitor piperonyl butoxide on the herbicidal activity and metabolism of isoproturon in herbicide resistant and susceptible biotypes of Phalaris minor and wheat. Pestic. Biochem. Physiol. 59:143153.CrossRefGoogle Scholar
Singh, S., Kirkwood, R. C., and Marshall, G. 1999. Biology and control of Phalaris minor Retz. (littleseed canarygrass) in wheat. Crop Prot. 18:116.Google Scholar
Smeda, R. J., Currie, R. S., and Rippee, J. H. 2000. Fluazifop-P resistance expressed as a dominant trait in sorghum (Sorghum bicolor). Weed Technol. 14:397401.Google Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997. Response of an acetolactate synthase (ALS)-resistant biotype of Amaranthus rudis to selected ALS-inhibiting and alternative herbicides. Weed Res. 37:93101.Google Scholar
Stankiewicz, M., Gadamski, G., and Gawronski, S. W. 2001. Genetic variation and phylogenetic relationships of triazine-resistant and triazine-susceptible biotypes of Solanum nigrum—analysis using RAPD markers. Weed Res. 41:287300.Google Scholar
Steckel, L., Hayes, B., Mueller, T., Smith, K., Nichols, S., Kendig, A., Craig, C., and Nichols, B. 2005. Impact of glyphosate-resistant horseweed on conservation tillage in the North Delta region. Weed Sci. Soc. Am. Abstr. 45:42.Google Scholar
Stephenson, G. R., Dykstra, M. D., McLaren, R. D., and Hamill, A. S. 1990. Agronomic practices influencing triazine-resistant weed distribution in Ontario. Weed Technol. 4:199207.Google Scholar
Sterling, T. M., Ray, I., Vallotton, A. D., and Sabba, R. P. 2002. Recessive inheritance of picloram resistance in yellow starthistle (Centaurea solstitialis L). Weed Sci. Soc. Am. Abstr. 42:11.Google Scholar
Talbert, R. E., Schmidt, L. A., Rutledge, J. S., Scherder, E. E., Lovelace, M. L., Buehring, N. W., and Baldwin, F. L. 2000. Alternative herbicide programs for control of propanil-resistant Echinochloa crus-galli (L.) Beauv. in drill-seeded rice. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: Inter. Weed Sci. Soc. P. 149.Google Scholar
Tardif, F. J. and Powles, S. B. 1999. Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass (Lolium rigidum). Weed Sci. 47:258261.Google Scholar
Thill, D. C. and Lemerle, D. 2001. World wheat and herbicide resistance. in Powles, S. B. and Shaner, D. L., eds. Herbicide Resistance and World Grains. New York: CRC Press. Pp. 165194.Google Scholar
Thill, D. C., O'Donovan, J. T., and Mallory-Smith, C. A. 1994. Integrated weed management strategies for delaying herbicide resistance in wild oats. Phytoprotection 75: (Suppl.). 6170.Google Scholar
Thomas, A. G., Leeson, J. Y., Beckie, H. J., and Hall, L. M. 2003. Herbicide use patterns and herbicide-resistant weed awareness: results from grower surveys in Alberta, Canada. Weed Sci. Soc. Am. Abstr. 43:66.Google Scholar
Tsuji, R., Fischer, A. J., Yoshino, M., Roel, A., Hill, J. E., and Yamasue, Y. 2003. Herbicide-resistant late watergrass (Echinochloa phyllopogon): similarity in morphological and amplified fragment length polymorphism traits. Weed Sci. 51:740747.Google Scholar
United States (U.S.) Environmental Protection Agency. 2001. Pesticide Registration (PR) Notice 2001–5. EPA 730-N-01-005. Washington, DC. 30 p.Google Scholar
Valverde, B. E. 1996. Management of herbicide resistant weeds in Latin America: the case of propanil-resistant Echinochloa colona in rice. in Brown, H., Cussans, G. W., Devine, M. D., Duke, S. O., Fernandez-Quintanilla, C., Helweg, A., Labrada, R. E., Landes, M., Kudsk, P., and Streibig, J. C., eds. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Department of Weed Control and Pesticide Ecology. Pp. 415420.Google Scholar
Valverde, B. E., Chaves, L., Garita, I., Ramírez, F., Vargas, E., Carmiol, J., Riches, C. R., and Casely, J. C. 2001. Modified herbicide regimes for propanil-resistant junglerice control in rain-fed rice. Weed Sci. 49:395405.Google Scholar
Valverde, B. E., Garita, I., Vargas, E., Chaves, L., Ramirez, F., Fischer, A. J., and Pabon, H. 1999. Anilofos as a synergist to propanil for controlling propanil-resistant junglerice, Echinochloa colona . Weed Sci. Soc. Am. Abstr. 39:159.Google Scholar
Valverde, B. E., Riches, C. R., and Caseley, J. C. 2000. Prevention and Management of Herbicide Resistant Weeds in Rice: Experiences from Central America with Echinochloa colona . San José, Costa Rica: Cámara de Insumos Agropecuarios. 123 p.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.Google Scholar
Vila-Aiub, M. M., Neve, P., Steadman, K. J., and Powles, S. B. 2005. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 42:288298.CrossRefGoogle Scholar
Warwick, S. I., Beckie, H. J., Simard, M. J., Légère, A., Nair, H., and Séguin-Swartz, G. 2004. Environmental and agronomic consequences of herbicide-resistant (HR) canola in Canada. in den Nijs, H.C.M., Bartsch, D., and Sweet, J., eds. Introgression from Genetically Modified Plants (GMP) into Wild Relatives. Wallingford, Oxfordshire, UK: CABI Publ. Pp. 323337.CrossRefGoogle Scholar
Warwick, S. I., Beckie, H. J., and Small, E. 1999. Transgenic crops: new weed problems for Canada? Phytoprotection 80:7184.Google Scholar
Warwick, S. I., Simard, M. J., Légère, A., Beckie, H. J., Braun, L., Zhu, B., Mason, P., Séguin-Swartz, G., and Stewart, C. N. 2003. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor. Appl. Genet. 107:528539.Google Scholar
Weersink, A., Llewellyn, R. S., and Pannell, D. J. 2005. Economics of pre-emptive management to avoid weed resistance to glyphosate in Australia. Crop Prot. 24:659665.Google Scholar
Werck-Reichhart, D., Hehn, A., and Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5:116123.Google Scholar
Westra, P., Nissen, S., and Karam, D. 2000. Risk factors that impact resistant weed selection. in Légère, A. ed. Proc. Third International Weed Science Congress, Foz do Iguassu, Brazil. Corvallis, OR: International Weed Science Society. Pp. 154155.Google Scholar
Willis, A. D., Mortimer, A. M., Putwain, P. D., and Moss, S. R. 1997. Half-sib analysis of the genetic basis of graminicide resistance in blackgrass, Alopecurus myosuroides L. (Huds.) in the UK. Integrated Approach to Combating Resistance: Resistance '97 Abstracts. Harpenden, Herts, UK: IACR-Rothamsted.Google Scholar
Wrubel, R. P. and Gressel, J. 1994. Are herbicide mixtures useful for delaying the rapid evolution of resistance? A case study. Weed Technol. 8:635648.Google Scholar
Zemetra, R., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci. 46:313317.Google Scholar
Zhang, J., Weaver, S. E., and Hamill, A. S. 2000. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 14:106115.Google Scholar