Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T19:07:57.369Z Has data issue: false hasContentIssue false

13C Discrimination: A Stable Isotope Method to Quantify Root Interactions between C3 Rice (Oryza sativa) and C4 Barnyardgrass (Echinochloa crus-galli) in Flooded Fields

Published online by Cambridge University Press:  20 January 2017

David R. Gealy*
Affiliation:
Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR 72160
Albert J. Fischer
Affiliation:
University of California–Davis, Davis, CA 95616-8780
*
Corresponding author's E-mail: david.gealy@ars.usda.gov

Abstract

Assessing belowground plant competition is complex because it is very difficult to separate weed and crop roots from each other by physical methods. Alternative techniques for separating crop and weed roots from each other are needed. This article introduces a stable isotope method that can quantify the amounts of roots of rice and barnyardgrass intermixed in flooded field soils. It relies on the biological principle that rice, a C3 (photosynthetic pathway) species, discriminates more effectively than barnyardgrass, a C4 species, against a relatively rare isotopic form (13C) of CO2. This results in different 13C: 12C isotope ratios (expressed as δ13C) in root tissues of the two species. δ13C values for monoculture barnyardgrass and rice grown in a standard flood-irrigated system were highly stable over 4 crop-years, averaging −13.12 ± 0.80 (SD) and −28.5 ± 0.11 (SD)‰, respectively, based on analysis by an isotope ratio mass spectrometer. Standard concentration curves relating measured δ13C values to set proportions of rice:barnyardgrass root biomass were described by linear regressions, typically with r2 values of 0.96 or greater. Quantities of intermixed rice and barnyardgrass roots sampled 0 to 5 cm deep from soil between rice rows were estimated by extrapolation from standard curves based on δ13C values. About 50% more barnyardgrass root tissue was detected in plots of Lemont long-grain rice than in weed-suppressive PI 312777 indica rice, demonstrating the feasibility of using this stable carbon isotope method in flooded rice systems.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arens, N. C., Jahren, A. H., and Amundson, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology. 26:137164.Google Scholar
Aucour, A. M. and Hillaire-Marcel, C. 1993. A 30,000 year record of 13C and 18O changes in organic matter from an equatorial peat bog. Geophys. Monogr. 78:343351.Google Scholar
Bach-Jensen, L., Courtois, B., Shen, L., Li, Z., Olofsdotter, M., and Mauleon, R. 2001. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron. J. 93:2126.Google Scholar
Badeck, F. W., Tcherkez, G., Nogués, S., Piel, C., and Ghashghaie, J. 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun. Mass Spectrom. 19:13811391. http://www.interscience.wiley.com. DOI: 10.1002/rcm.1912.Google Scholar
Bertholdsson, N. O. 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. 44:7886.Google Scholar
Bisutti, I., Hilke, I., and Raessler, M. 2004. Determination of total organic carbon—an overview of current methods. Trends Anal. Chem. 23:716726.Google Scholar
Boutton, T. W. 1991a. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. Pages 155171. in Coleman, D. C. and Fry, B. eds. Carbon Isotope Techniques. New York: Academic Press.Google Scholar
Boutton, T. W. 1991b. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Pages 173185. in Coleman, D. C. and Fry, B. eds. Carbon Isotope Techniques. New York: Academic Press.Google Scholar
Boutton, T. W. 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Pages 4782. in Boutton, T. W. and Yamasaki, S. eds. Mass Spectrometry of Soils. New York: Marcel Dekker.Google Scholar
Bridges, D. C. and Baumann, P. A. 1992. Weeds causing losses in the United States. Pages 75147. in Bridges, D. C. ed. Crop Losses Due to Weeds in the United States. Champaign, IL: Weed Science Society of America.Google Scholar
Burk, R. L. and Stuiver, M. 1981. Oxygen isotope ratios in trees reflect mean annual temperature and relative humidity. Science. 211:14171419.Google Scholar
Clay, D. E., Clay, S. A., Lyon, D. J., and Blumenthal, J. M. 2005. 13C discrimination in corn grain can be used to separate and quantify yield losses due to water and nitrogen stresses. Weed Sci. 53:2329.Google Scholar
Clay, D. E., Engel, R. E., Long, D. S., and Liu, Z. 2001. Using C13 discrimination to characterize N and water responses in spring wheat. Soil Sci. Soc. Am. J. 65:18231828.Google Scholar
Courtois, B., Ahmadi, N., Khowaja, F., Price, A., Rami, J. F., Frouin, J., Hamelin, C., and Ruiz, M. 2009. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice. DOI 10.1007/s12284-009-9028-9.Google Scholar
Deren, C. W., Datnoff, L. E., Snyder, G. H., and Martin, F. G. 1994. Silicon concentration, disease, response, and yield components of rice genotypes grown on flooded organic Histosols. Crop Sci. 34:733737.Google Scholar
Derner, J. D., Johnson, H. B., Kimball, B. A., Pinter, P. J. Jr., Polley, H. W., Tischler, C. R., Boutton, T. W., Lamorete, R. L., Wall, G. W., Adam, N. R., Leavitt, S. W., Ottman, M. J., Matthias, A. D., and Brooks, T. J. 2003. Above- and below-ground responses of C3–C4 species mixtures to elevated CO2 and soil water availability. Global Change Biology. 9:452460.Google Scholar
De Vida, F. B. P., Laca, E., Mackill, D., Fernandez, G. M., and Fischer, A. 2006. Relating rice traits to weed competitiveness and yield: a path analysis. Weed Sci. 54:11221131.Google Scholar
Dilday, R. H., Mattice, J. D., Moldenhauer, K. A., and Yan, W. 2001. Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass. J. Crop Prod. 4:287301.Google Scholar
Dingkuhn, M., Farquhar, G. D., De Datta, S. K., and O'Toole, J. C. 1991. Discrimination of 13C among upland rices having different water use efficiencies. Aust. J. Agric. Res. 42:11231131.Google Scholar
Dingkuhn, M., Johnson, D. E., Sow, A., and Audebert, A. Y. 1999. Relationships between upland rice canopy characteristics and weed competitiveness. Field Crops Res. 61:7995.Google Scholar
Ehleringer, J. R. 1991. 13C/12C fractionation and its utility in terrestrial plant studies. Pages 187200. in Coleman, D. C. and Fry, B. eds. Carbon Isotope Techniques. New York: Academic Press.Google Scholar
Ehleringer, J. R. and Cooper, T. A. 1988. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia. 76:562566.Google Scholar
Eleki, K., Cruse, R. M., and Albrecht, K. A. 2005. Root segregation of C3 and C4 species using carbon isotope composition. Crop Sci. 45:879882.Google Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:503537. DOI: 10.1146/annurev.pp.40.060189.002443.Google Scholar
Farquhar, G. D. and Lloyd, L. 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. Pages 4770. in Ehleringer, J. R., Hall, A. E., and Farquhar, G. D. eds. Stable Isotopes and Plant Carbon–Water Relations. New York: Academic Press.Google Scholar
Farquhar, G. D., O'Leary, M. H., and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9:121137.Google Scholar
Fischer, A., Ramírez, H. V., and Lozano, J. 1997. Suppression of junglerice [Echinochloa colona (L.) Link] by irrigated rice cultivars in Latin America. Agron. J. 89:516521.Google Scholar
Fischer, A. J., Ateh, C. M., Bayer, D. E., and Hill, J. E. 2000. Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields. Weed Sci. 48:225230.Google Scholar
Fofana, B. and Rauber, R. 2000. Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res. 40:271280.Google Scholar
Gealy, D. R. 2001. Determination of root distribution of weed suppressive rice (Oryza sativa) and barnyardgrass (Echinochloa crus galli) in field soil using 13C isotope analysis. Pages 6974. in Norman, R. J. and Meullenet, J. F. eds. B. R. Wells Arkansas Rice Research Studies 2000, Research Series 485. Fayetteville: University of Arkansas Agricultural Experiment Station.Google Scholar
Gealy, D. R., Estorninos, L. E. Jr., Gbur, E. E., and Chavez, R. S. C. 2005a. Interference interactions of two rice cultivars and their F3 cross with barnyardgrass (Echinochloa crus-galli) in a replacement series study. Weed Sci. 53:323330.Google Scholar
Gealy, D. R. and Moldenhauer, K. A. 2005. Progress in developing weed suppressive rice cultivars for the southern U.S. Pages 257296. in Singh, H., Batish, D., and Kohli, R. eds. Handbook of sustainable weed management. Binghampton, NY: Haworth Press.Google Scholar
Gealy, D., Ottis, B., Talbert, R., Moldenhauer, K., and Yan, W. 2005b. Evaluation and improvement of allelopathic rice germplasm at Stuttgart, Arkansas, USA. Pages 157163. in. Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, NSW, Australia.Google Scholar
Gealy, D. R., Wailes, E. J., Estorninos, L. E. Jr., and Chavez, R. S. C. 2003. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51:601609.Google Scholar
Gibson, K. D., Foin, T. C., and Hill, J. E. 1999. The relative importance of root and shoot competition between water-seeded rice and Echinochloa phyllopogon . Weed Res. 39:181190.Google Scholar
Gibson, K. D., Hill, J. E., Foin, T. C., Caton, B. P., and Fischer, A. J. 2001. Water-seeded rice cultivars differ in ability to interfere with watergrass. Agron. J. 93:181190.Google Scholar
Impa, S. M., Nadaradjan, S., Boominathan, P., Shashidhar, G., Bindumadhava, H., and Sheshshayee, M. S. 2005. Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice. Crop Sci. 45:25172522.Google Scholar
Kim, S. Y., Madrid, A. V., Park, S. T., Yang, S. J., and Olofsdotter, M. 2005. Evaluation of rice allelopathy in hydroponics. Weed Res. 45:7479.Google Scholar
Kloeppel, B. D., Gower, S. T., Treichel, I. W., and Kharuk, S. 1998. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison. Oecologia. 114:153159.Google Scholar
Klumpp, K., Schäufele, R., Lötscher, M., Lattanzi, F. A., Feneis, W., and Schnyder, H. 2005. C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ. 28:241250.Google Scholar
Kondo, M., Pablico, P. P., Aragones, D. V., and Agbisit, R. 2004. Genotypic variations in carbon isotope discrimination, transpiration efficiency, and biomass production in rice as affected by soil water conditions and N. Plant Soil. 267:165177.Google Scholar
Kong, C. H., Li, H. B., Hu, F., Xu, X. H., and Wang, P. 2006. Allelochemicals released by rice roots and residues in soil. Plant Soil. 288:4756.Google Scholar
Korner, C., Farquhar, G. D., and Roksandic, Z. 1988. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia. 74:623632.Google Scholar
Labrada, R. 2007. The need for improved weed management in rice. Pages 310324. in. Proceedings of the 20th Session of the International Rice Commission, Bangkok, Thailand, July 23–26, 2007. Rome: FAO.Google Scholar
Lara, M. V., Drincovich, M. F., and Andreo, C. S. 2004. Induction of a crassulacean acid-like metabolism in the C4 succulent plant, Portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism. Plant Cell Physiol. 45:618626.Google Scholar
Laza, Ma R., Kondo, M., Ideta, O., Barlaan, E., and Imbe, T. 2006. Identification of quantitative trait loci for δ13C and productivity in irrigated lowland rice. Crop Sci. 46:763773.Google Scholar
Ma, J. F., Goto, S., Tamai, K., and Ichii, M. 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 127:17731780.Google Scholar
Norman, R. J., Wilson, C. E. Jr., and Slaton, N. A. 2003. Soil fertilization and mineral nutrition in U.S. mechanized rice culture. Pages 331411. in Smith, C. W. and Dilday, R. H. eds. Rice: Origin, history, technology, and production. Hoboken, NJ: John Wiley and Sons.Google Scholar
O'Leary, M. H. 1993. Biochemical basis of carbon isotope fractionation. Pages 1928. in Ehleringer, J. R., Hall, A. E., and Farquhar, G. D. eds. Stable isotopes and plant carbon–water relations. New York: Academic Press.Google Scholar
Park, R. and Epstein, S. 1961. Metabolic fractionation of C13 & C12 in plants. Plant Physiol. 36:133138.Google Scholar
Polley, H. W., Johnson, H. B., and Mayeux, H. S. 1992. Determination of root biomasses of three species grown in a mixture using stable isotopes of carbon and nitrogen. Plant Soil. 142:97106.Google Scholar
Rajagopalan, G., Ramesh, R., and Sukumar, R. 1999. Climatic implications of d13C and d18O ratios from C3 and C4 plants growing in a tropical montane habitat in southern India. J. Biosci. 24:491498.Google Scholar
Rodrigues, M. L., Pacheco, C. M. A., and Chaves, M. M. 1995. Soil–plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J. Exp. Bot. 46:947956.Google Scholar
Sangster, A. G., Hodson, J. J., and Tubb, J. J. 2001. Silicon deposition in higher plants. Pages 85113. in Datoff, L. E., Snyder, G. H., and Korndörfer, G. H. eds. Silicon in agriculture. Amsterdam: Elsevier Science.Google Scholar
Scartazza, A., Lauteri, M., Guido, M. C., and Brugnoli, E. 1998. Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust. J. Plant Physiol. 25:489498.Google Scholar
Smith, R. J. Jr. 1988. Weed thresholds in southern U.S. rice (Oryza sativa). Weed Technol. 2:232241.Google Scholar
Sternberg, L. and DeNiro, M. J. 1983. Isotopic composition of cellulose from C3, C4 and CAM plants growing in the vicinity of one another. Science. 220:947949.Google Scholar
Sternberg, L., DeNiro, M. J., and Johnson, H. B. 1984. Isotopic ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 74:557561.Google Scholar
Svejcar, T. J. and Boutton, T. W. 1985. The use of stable carbon isotope analysis in rooting studies. Oecologia. 67:205208.Google Scholar
Svejcar, T. J., Boutton, T. W., and Christiansen, S. 1988. Rooting dynamics of Medicago sativa seedlings growing in association with Bothriochloa caucasica . Oecologia. 77:453456.Google Scholar
Svejcar, T. J., Boutton, T. W., and Trent, J. D. 1990. Assessment of carbon allocation with stable carbon isotope labeling. Agron J. 82:1821.Google Scholar
University of Arkansas Stable Isotope Laboratory, Department of Biological Sciences, 850 W Dickson St, Fayetteville, AR 72701 2009. http://www.uark.edu/ua/isotope/index.php.Google Scholar
Watkins, N. K., Fitter, A. H., Graves, J. D., and Robinson, D. 1996. Carbon transfer between C3 and C4 plants linked by common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol. Biochem. 28:471477.Google Scholar
Wilson, C. E. and Runsick, S. K. 2007. Trends in Arkansas rice production. Pages 1322. in Norman, R. J., Meullenet, J. F., and Moldenhauer, K. A. K. eds. Research Series 550, B.R. Wells Rice Research Studies 2006. Fayetteville: University of Arkansas. http://arkansasagnews.uark.edu/408.htm.Google Scholar
Yoshida, S., Ohnishi, Y., and Kitagishi, K. 1962. Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci. Plant Nutr. 8:1520.Google Scholar
Ziegler, S. E. and Brisco, S. L. 2004. Relationships between the isotropic composition of dissolved organic carbon and its bioavailability in contrasting Ozark streams. Hydrobiologia. 513:153169.Google Scholar
Ziegler, H., Osmond, C. B., Stichler, W., and Trimborn, P. 1976. Hydrogen isotope discrimination in higher plants: correlations with photosynthetic pathway and environment. Planta (Berl.) 128:8592.Google Scholar
Zimmerman, J. K. and Ehleringer, J. R. 1990. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum . Oecologia. 83:247249.Google Scholar
Supplementary material: Image

Gealy and Fischer supplementary material

Figure S1

Download Gealy and Fischer supplementary material(Image)
Image 279.7 KB