Tierarztl Prax Ausg G Grosstiere Nutztiere 2017; 45(02): 98-106
DOI: 10.15653/TPG-160655
Originalartikel
Schattauer GmbH

Einfluss von Morphin, Butorphanol und Levomethadon in unterschiedlicher Dosierung auf den thermischen nozizeptiven Schwellenwert bei Pferden

Effects of morphine, butorphanol and levomethadone in different doses on thermal nociceptive thresholds in horses
Paula Dönselmann im Sande
1   Klinik für Pferde, Stiftung Tierärztliche Hochschule Hannover, Hannover
,
Klaus Hopster
1   Klinik für Pferde, Stiftung Tierärztliche Hochschule Hannover, Hannover
,
Sabine Kästner
1   Klinik für Pferde, Stiftung Tierärztliche Hochschule Hannover, Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen: 12 July 2016

Akzeptiert nach Revision: 14 January 2016

Publication Date:
09 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: In der Pferdemedizin stehen verschiedene Opioide zur Behandlung von Schmerzen zur Verfügung. Es gibt jedoch wenig Information zu einem direkten Vergleich der analgetischen Effektivität, Wirkdauer und Nebenwirkungen der einzelnen Substanzen. Ziel dieser Studie war die Evaluierung gebräuchlicher Dosierungen von Morphin, Butorphanol und Levomethadon sowie die Evaluierung der analgetischen Effektivität dieser Opioide in einer höheren Dosierung mithilfe der Thermostimulation beim Pferd. Material und Methoden: Bei den Probanden handelte es sich um acht klinisch allgemeingesunde Tiere. Es wurde ein thermischer Reiz gesetzt und eine zuvor definierte Abwehrreaktion des Pferdes als Endpunkt gewertet. Nach Bestimmung von Nullwerten erhielten alle Pferde in einem randomisierten „Cross-over“-Studiendesign ein Plazebo (P = isotone Kochsalzlösung) sowie in jeweils zwei Dosierungen Morphin (M0,1 = 0,1 mg/kg; M0,2 = 0,2 mg/kg), Butorphanol (B0,1 = 0,1 mg/kg; B0,2 = 0,2 mg/kg) und Levomethadon (L0,1 = 0,1 mg/kg; L0,2 = 0,2 mg/kg) mit 14-tägiger Auswaschzeit. Die Messungen erfolgten nach 10, 30, 60, 90, 120, 180, 240, 300, 360, 420, 540 und 1350 Minuten. Neben dem thermischen Schwellenwert wurden Verhalten und Darmmotorik überprüft. Ergebnisse: Zu signifikant erhöhten Schwellenwerten kam es in den Gruppen M0,2 (240 min), B0,1 (90 min), B0,2 (90 min), L0,1 (60 min) und L0,2 (300 min). Verhaltensänderungen in Form von Drangwandern, Lippenspiel, Kopfzucken, erhöhtem Muskeltonus, Zittern, Ataxie oder Leerkauen traten auf. Ferner kam es in allen Gruppen zu einer Reduzierung der Darmgeräusche und einem verzögerten Kotabsatz. Schlussfolgerung und klinische Relevanz: Levomethadon führte dosisabhängig zu einer lang anhaltenden Analgesie, während mit Butorphanol keine Verstärkung der Analgesie in der höheren Dosierung zu erreichen war. Ein Ceiling-Effekt liegt hier nahe. Morphin hatte nur in der hohen Dosis einen nachweisbaren analgetischen Effekt. Weitere Studien sind notwendig, um für den Einsatz von Levomethadon und Morphin beim Pferd eine fundierte Dosisempfehlung zu erarbeiten.

Summary

Objective: Various opioids are available for use in equine medicine. Studies directly comparing their analgesic effects and side effects are rare. Therefore, the aim of this study was to compare the antinociceptive effect and the duration of analgesia of two different doses of morphine, butorphanol and levomethadone in horses. Material and methods: Eight adult, healthy horses were used for this randomized, placebo-controlled, blinded cross-over trail. Each horse received placebo (P = 0.9% saline) and morphine (M0.1 = 0.1 mg/kg; M0.2 = 0.2 mg/ kg), butorphanol (B0.1 = 0.1 mg/kg; B0.2 = 0.2 mg/kg) and levomethadone (L0.1 = 0.1 mg/kg; L0.2 = 0.2 mg/kg) in a low and a high dose and with a wash-out period of 14 days. Thermal thresholds were determined by incremental contact heat applied to the skin at the withers. Single stimulations were performed 15 minutes prior and 10, 30, 60, 90, 120, 180, 240, 300, 360, 420, 540 and 1350 minutes after treatment. Threshold values, gastrointestinal auscultation score and horses’ behavior were recorded. Data were analyzed with analysis of variance for repeated measurements (p < 0.05). Results: In group M0.1, changes in thermal thresholds did not reach significance. Thermal threshold increased significantly in the groups M0.2, B0.1, B0.2, L0.1 and L0.2 for 240, 90, 90, 60 and 300 minutes, respectively. Behavioural changes, increased locomotion and decreased bowel sounds as well as delayed time until defecation were noticed in all groups. Conclusions: Levomethadone induced a dose-dependent increase and prolongation of analgesia, whereas with butorphanol there was no difference between dosages regarding duration and intensity of analgesia. Morphine provided detectable analgesia only in the high dose of 0.2 mg/kg. Clinical relevance: Levomethadone and morphine in the low dose (0.1 mg/kg) produced only minor and short lived anti-nociception and further studies are necessary to give a profound dose recommendation for the use of these drugs in horses.

 
  • Literatur

  • 1 Änggård E, Nilsson MI, Holmstrand J, Gunne LM. Pharmacokinetics of methadone during maintenance therapy: Pulse labeling with deuterated methadone in the steady state. Eur J Clin Pharmacol 1979; 16: 53-57.
  • 2 Bagnol D, Mansour A, Akil H, Watson SJ. Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience 1997; 81: 579-591.
  • 3 Bertino M, Beauchamp GK, Engelman K. Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. Am J Physiol – Reg I 1991; 261: R59-R63.
  • 4 Boscan P, Van Hoogmoed LM, Farver TB, Snyder JR. Evaluation of the effects of the opioid agonist morphine on gastrointestinal tract function in horses. Am J Vet Res 2006; 67: 992-997.
  • 5 Brosnan RJ, Pypendop BH, Siao KT, Stanley CD. Effects of remifentanil on measures of anesthetic immobility and analgesia in cats. Am J Vet Res 2009; 70: 1065-1071.
  • 6 Brugmans F, Deegen E. Laparoscopic surgical technique for repair of rectal and colonic tears in horses: An experimental study. Vet Surg 2001; 30: 409-416.
  • 7 Bulungham RES, Mcquay HJ, Porter EJB, Thomas D, Allen MC, Moore RA. Acute I. V. methadone kinetics in man: relationship to chronic studies. Brit J Anaesth 1982; 54: 1271-1276.
  • 8 Chambers JP, Livingston A, Waterman AE. A device for testing nociceptive thresholds in horses. Vet Anaesth Analg 1990; 17: 42-44.
  • 9 Clarke KW, Paton BS. Combined use of detomidine with opiates in the horse. Equine Vet J 1988; 20: 331-334.
  • 10 Clutton RE. Opioid analgesia in horses. Vet Clin North Am Equine Pract 2010; 26: 493-514.
  • 11 Combie J, Dougherty J, Nugent E, Tobin T. The pharmacology of narcotic analgesics in the horse. IV. Dose and time response relationships for behavioral responses of morphine, meperidine, pentazocine, anileridine, methadone, and hydromorphone. J Equine Med Surg 1979; 3: 377-385.
  • 12 Combie J, Shults T, Nugent EC, Dougherty J, Tobin T. Pharmacology of narcotic analgesics in the horse: selective blockade of narcotic-induced locomotor activity. Am J Vet Res 1981; 42: 716-721.
  • 13 Combie JD, Nugent TE, Tobin T. Pharmacokinetics and protein binding of morphine in horses. Am J Vet Res 1983; 44: 870-874.
  • 14 Corletto F, Raisis AA, Brearley JC. Comparison of morphine and butorphanol as pre-anaesthetic agents in combination with romifidine for field castration in ponies. Vet Anaesth Analg 2005; 32: 16-22.
  • 15 Elfenbein JR, Sanchez LC, Robertson SA, Cole CA, Sams R. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses. Vet Anaesth Analg 2009; 36: 162-172.
  • 16 Fee JPH, Bovill JG. Pharmacology For Anaesthesiologists. Abingdon: Taylor & Francis; 2005
  • 17 Fickel J, Bagnol D, Watson SJ, Akil H. Opioid receptor expression in the rat gastrointestinal tract: a quantitative study with comparison to the brain. Mol Brain Res 1997; 46: 1-8.
  • 18 Figueiredo JP, Muir WW, Sams R. Cardiorespiratory, gastrointestinal, and analgesic effects of morphine sulfate in conscious healthy horses. Am J Vet Res 2012; 73: 799-808.
  • 19 Gaynor JS, Muir WW. Handbook of Veterinary Pain Management. 2nd edn.. Missouri: Mosby/Elsevier; 2008: 87.
  • 20 Gorman AL, Elliott KJ, Inturrisi CE. The d- and l-isomers of methadone bind to the non-competitive site on the N-methyl-D-aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci Lett 1997; 223: 5-8.
  • 21 Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32: 77-88.
  • 22 Kalpravidh M, Lumb WV, Wright M, Heath RB. Analgesic effects of butorphanol in horses: dose-response studies. Am J Vet Res 1984; 45: 211-216.
  • 23 Kalpravidh M, Lumb WV, Wright M, Heath RB. Effects of butorphanol, flunixin, levorphanol, morphine, and xylazine in ponies. Am J Vet Res 1984; 45: 217-223.
  • 24 Kamerling S, Weckman T, Donahoe J, Tobin T. Dose related effects of the kappa agonist U-50,488H on behaviour, nociception and autonomic response in the horse. Equine Vet J 1988; 20: 114-118.
  • 25 Kamerling SG, Dequick DJ, Weckman TJ, Tobin T. Dose-related effects of ethylketazocine on nociception, behaviour and autonomic responses in the horse. J Pharm Pharmacol 1986; 38: 40-45.
  • 26 Kamerling SG, Weckman TJ, DeQuick DJ, Tobin T. A method for studying cutaneous pain perception and analgesia in horses. J Pharmacol Methods 1985; 13: 267-274.
  • 27 Knych HK, Casbeer HC, McKemie DS, Arthur RM. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J Vet Pharmacol Ther 2012; 36: 21-30.
  • 28 Kristensen JD, Svensson B, Gordh Jr T. The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain 1992; 51: 249-253.
  • 29 Kristensen K, Christensen CB, Christrup LL. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci 1995; 56: 45-50.
  • 30 Linardi RL, Stokes AM, Keowen ML, Barker SA, Hosgood GL, Short CR. Bioavailability and pharmacokinetics of oral and injectable formulations of methadone after intravenous, oral, and intragastric administration in horses. Am J Vet Res 2012; 73: 290-295.
  • 31 Love E, Taylor P, Murrell J, Whay H. Effects of acepromazine, butorphanol and buprenorphine on thermal and mechanical nociceptive thresholds in horses. Equine Vet J 2011; 44: 221-225.
  • 32 Love EJ, Murrell J, Whay HR. Thermal and mechanical nociceptive threshold testing in horses: a review. Vet Anaesth Analg 2011; 38: 3-14.
  • 33 Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of morphine administration: Demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharm Ther 1990; 47: 12-19.
  • 34 Pippi NL, Lumb WV, Fialho SAG, Scott RJ. A model for evaluating pain in ponies. J Equine Med Surg 1979; 3: 430-435.
  • 35 Poller C, Hopster K, Rohn K, Kastner SB. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses – comparison of different locations and environmental conditions. BMC Vet Res 2013; 9: 4-10.
  • 36 Price J, Marques JM, Welsh EM, Waran NK. Pilot epidemiological study of attitudes towards pain in horses. Vet Rec 2002; 151: 570-575.
  • 37 Roger T, Bardon T, Ruckebusch Y. Comparative effects of mu and kappa opiate agonists on the cecocolic motility in the pony. Can J Vet Res 1994; 58: 163-166.
  • 38 Schatzman U, Armbruster S, Stucki F, Busato A, Kohler I. Analgesic effect of butorphanol and levomethadone in detomidine sedated horses. J Vet Med A Physiol Pathol Clin Med 2001; 48: 337-342.
  • 39 Senior JM, Pinchbeck GL, Dugdale AHA, Clegg PD. Retrospective study of the risk factors and prevalence of colic in horses after orthopaedic surgery. Vet Rec 2004; 155: 321-325.
  • 40 Svensson P, Rosenberg B, Beydoun A, Morrow TJ, Casey KL. Comparative psychophysical characteristics of cutaneous CO2 laser and contact heat stimulation. Somatosensory & Motor Research 1997; 14: 113-118.