
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 222

FUSION METHOD USED TO TOLERATE THE FAULTS OCCURRED

IN DISRTIBUTED SYSTEM

Archana Thange
1
, Amina.N

2
, Amruta Nimbalkar

3

1
ME (IT), DKGOI’S COE, swami chincholi, Maharashtra, India

2
ME (COMPUTER), DKGOI’S COE, swami chincholi, Maharashtra, India

3
ME (COMPUTER), DKGOI’S COE, swami chincholi, Maharashtra, India

Abstract
In a large distributed system there are more chances to occur faults, the only solution to prevalent this is to use the technique of

replication. By using this technique some additional back-ups are needed. For example, if we have ‘N’ distinct data structures

‘K’ no of crash faults occurs each data structure by the use of back-ups, the replication technique needed ‘K+1’ replicates of

each data structures. Here we present a solution of fusion method that combines the corrective codes and some selective

replications to tolerate ‘K’ crash faults using ‘K’ additional fused back -ups. We show that our solution will give us O (n) savings

in space instead of using replication. The theoretical and practical research results that the fused back ups are more space

efficient as compared to replication because they causes minimal overhead for normal operation. Our solution requires only 120

back up structures instead of 300 back up structures which are used in replication method. This also results the power saving. In

this paper we present a concept of using the combination of replication and fusion based technique.

Keywords: - Replication, fusion, primaries, back-ups, fault tolerance

--***--

1. INTRODUCTION

Fault tolerance is an ability of a system to perform its

functions correctly even in the presence of internal faults.

The aim by using fault tolerance is to increase the

dependability of a system. The approach to increase the

dependability is fault prevention. This achieves by

inspecting the system to eliminate the circumstances by

which the fault arises [1].

Error- The reason or cause of failure is known as error. It

represents an invalid state that is not specified in system

behavior.

Fault- The real or root cause of a failure is known as a fault.

Failure- It is the symptom of a fault. Multiple failures are

occurred due to a single error. Faults can be classified into

two.

1) Transient

2) Permanent

Transient fault will be disappeared without any intervention.

But a permanent fault will remain in the system if it is

removed from an external agent.

Faults can be mainly classified into two types’ crash fault

and byzantine fault [6].

Crash fault is a type of fault in which the system either stops

its complete work or it never returns to a valid state [5].

Byzantine fault is a type of fault of an arbitrary nature.

1.1 Basic Theory

We know that a distributed system have a structure of

independent servers which are interacting with the clients by

the use of messages. The data structures like linked lists,

queues, hash tables are used to maintain large instance of

data structures for the servers to efficiently store and

manipulate the data [4]. These servers may become faulty

by the data structures may crash, which leaves the total loss

in its state leads to an arbitrary state, also which send some

wrong messages to clients or other data structures. Normally

we are using a technique known as replication. Suppose N

given data structures are there and K no of crash faults

occurs, the replication maintains K+1 replicas of each data

structure resulting total of NK backups. For some large

values of N, this is too costly in terms of space as well as

power to maintain this back up process. Coding theory is the

space efficient alternative to used as in replication process.

The data are transmitted across a channel in an encoded

form by using some redundant bits that will correct the

errors by the channels contain noisy. In a given set of data

structures we maintain a set of fused back- ups that will

tolerate ‘K’ crash faults among the given data structures. In

replication process, the data structures replicated are

identical to the data structures but in fusion there I no

identical copy of given data structure are used. E can

distinguish it as primaries and backups.

So, in our proposed system the data structures which are

needed to tolerate the faults are known as primaries. And the

back-ups contains only ’K’ additional data structures. In

replication it requires K+1 additional copies of the primary.

The primary data’s are in a coded form to save the space in

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 223

fused backups and to enable efficient updates by using

replicate indexed structure of each primary.

2. OBJECTIVE

The main objective to introduce the fused backups to

tolerate the faults occurred in distributed system.by using

these fused backups which developer a system that reduces

the fault recovery time. The maximum load can be

distributed on any backups introducing this proposed

system. Another motive to develop this proposed system is

with space efficient and to reduce the updating time.

2.1 Scope

The main aim of the system developing is to reduce the

overhead of replication. To tolerate ‘K’ crash faults among

‘n’ distinct data structures the technique of replication

requires ‘K+1’ replicas of each data structure, which results

‘NK’ additional backups[8]. While using a fused data

structure approach we use a fusion technique that uses a

combination of erasure codes and some selective replication

to tolerate ‘K’ crash faults using ‘K’ additional fused

backups [3].

The fusion solution referred to use a combination of erasure

codes and selective replicas to tolerate ‘K’ crash faults using

‘K’ additional fused backups [2]. The fusion solution saves

O (n) space over replication.

3. IMPLEMENTATION

3.1 Architecture of Proposed System

Fig 1: architecture of system

The modules in the system contains

1. Formation of system

2. Primary data addition

3. Generation of fussed data

4. Insertion of data

5. Deletion of data

Descriptions

3.1.1 Formation of system

The ‘N’ given data structures are referred to a primaries

X1… Xn.

The backup data structures are generated are referred as

fussed backups or fussed data structures.

3.1.2 Primary Data Addition

Fig 2: Primary data addition

It is the module which is used to add the primary data to the

server. It contains some key and value pairs. The figure

shows the format of primary data addition.

3.1.3 Generation of Fussed Data

Fig 3: Fussed Data Generation

The fussed data is generated with respect to the primary

data. The backup data structures are generated based on the

process of fussing primary data known as fussed backups or

fussed data structures. The operator who combines the

primary data is called fusion operator.

IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308

Volume: 03 Issue: 09 | Sep-2014, Available @ http://www.ijret.org 224

3.1.4 Insertion of Data

Fig 4: Insertion of Data

In this module if a client insert or update a data in the

primary a s ell as fussed data when he sends an insert to a

primary X1, if the key is not already present, the primary X1

which creates a new node containing this value, insert it into

the primary linked list and inserts a pointer to this node at

the end of auxiliary list. The primary send key and the ne

key value is added and the old value which is associated

with the key to all that fussed backups. A data stack is used

to maintain each fussed data backup that contains primary

elements in coded form. If the key value is not present on

receiving the insert from X1 the backup data structure

update the code value of the fussed node following the one

contains the topmost element of X1.

3.1.5 Deletion of Data

We can delete a key at the primaries and from the backups.

The key value which contains the X1 from the primary

which obtain its value which we want to send to the backups

Fig 5: Deletion of Data

The primary can also send the value of the element which

are pointed by the tail node of the auxiliary list along with

the value and the key ‘K’. The topmost element of X2 is

shifted to the backup stack. After the sending operation the

final node value of the auxiliary list is shifted by the primary

to the position of the auxiliary node pointing to the deleted

element.

4. CONCLUSIONS

The method of fusion technique for fault tolerance that saves

as O (n) savings in space while comparing to the replication

method without any overhead during its normal operation.

The proposed system will provide us the space optimality,

efficient updates and updating of optimality and order of

independence. We can use this system to reduce the data

structures required to recover the faults, to increase the

efficiency of fault tolerance in data structures. It can be used

in all the data structures as a cost effective fault tolerance

method.

REFERENCES

[1]. Bharath Balasubramanian and Vijay K. Garg, Fellow,

IEEE,"Fault Tolerance in Distributed Systems Using Fused

Data Structures", IEEE transactions on parallel and

distributed systems, vol. 24, no. 4, April 2013

[2]. B. Balasubramanian and V.K. Garg, "Fused Data

Structure Library (Implemented in Java 1.6)," Parallel and

Distributed SystemsLaboratory,http://maple.ece.utexas.edu,

2010.

[3]. J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,

and D. Zuckerman, "An XOR-Based Erasure-Resilient

Coding Scheme," Technical Report TR-95-048, Int'l

Computer Science Inst., Aug. 1995.

[4]. V.K. Garg and V. Ogale, "Fusible Data Structures for

Fault Tolerance," Proc. 27th Int'l Conf. Distributed

Computing Systems (ICDCS '07), June 2007.

[5]. V. Ogale, B. Balasubramanian, and V.K. Garg, "A

Fusion-Based Approach for Tolerating Faults in Finite State

Machines," Proc. IEEE Int'l Symp. Parallel and Distributed

Processing (IPDPS '09), pp. 1-11, 2009.

[6]. V.K. Garg, "Implementing Fault-Tolerant Services

Using State Machines: Beyond Replication," Proc. 24th Int'l

Conf. Distributed Computing (DISC), pp. 450-464, 2010.

BIOGRAPHIES

Archana Thange is a student of M. E. (I.T)

second year. She has completed her B.E.

in Information Technology. She has

worked as an assistant Professor at

H.S.B.P.V.T’s COE kashti.

M. E. (Computer) second year. She has

completed her B.Tech. In Computer

Science. She has worked as an assistant

Professor at H.S.B.P.V.T’s COE kashti.

M. E. (Computer) second year. She has completed her BE in

Information Technology.

