Skip to main content
Log in

A new characterization approach to study the mechanical behavior of silicon nanowires

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This work proposes a new approach to characterize the mechanical properties of nanowires based on a combination of nanomechanical measurements and models. Silicon nanowires with a critical dimension of 90 nm and a length of 8 μm obtained through a monolithic process are characterized through in-situ three-point bending tests. A nonlinear nanomechanical model is developed to evaluate the mechanical behavior of nanowires. In this model, the intrinsic stress and surface parameters are examined based on Raman spectroscopy measurements and molecular dynamics simulations, respectively. This work demonstrates a new approach to measure the mechanical properties of Si nanowires by considering the surface effect and intrinsic stresses. The presented technique can be used to address the existing discrepancies between numerical estimations and experimental measurements on the modulus of elasticity of silicon nanowires.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Wang, Z. Shan, H. Huang, Adv. Sci. 4(4), 1600332 (2017), https://doi.org/10.1002/advs.201600332. http://doi.wiley.com/10.1002/advs.201600332

  2. T. Song, S.T. Lee, B. Sun, Nano Energy 1(5), 654 (2012)

    Article  CAS  Google Scholar 

  3. M. Nasr Esfahani, B.E. Alaca, Adv. Eng. Mater. 21(8), 1900192 (2019). https://doi.org/10.1002/adem.201900192

    Article  CAS  Google Scholar 

  4. K. Kang, W. Cai, Int. J. Plast. 26(9), 1387 (2010). https://doi.org/10.1016/j.ijplas.2010.02.001

    Article  CAS  Google Scholar 

  5. D.M. Tang, C.L. Ren, M.S. Wang, X. Wei, N. Kawamoto, C. Liu, Y. Bando, M. Mitome, N. Fukata, D. Golberg, Nano Lett. 12(4), 1898 (2012). https://doi.org/10.1021/nl204282y. https://pubs.acs.org/doi/10.1021/nl204282y

  6. Z. Tasdemir, O. Peric, D. Sacchetto, G.E. Fantner, Y. Leblebici, B.E. Alaca, IEEE Trans. Nanotechnol. 17(6), 4 (2018). https://doi.org/10.1109/TNANO.2018.2868712

    Article  Google Scholar 

  7. Z. Tasdemir, N. Wollschlöger, W. Österle, Y. Leblebici, B.E. Alaca, Nanotechnology 27(9), 095303 (2016). https://doi.org/10.1088/0957-4484/27/9/095303. https://iopscience.iop.org/article/10.1088/0957-4484/27/9/095303

  8. N. Wollschlöger, Z. Tasdemir, I. Höusler, Y. Leblebici, W. Österle, B.E. Alaca, J. Nanomater. 2016, 1 (2016) . https://doi.org/10.1155/2016/4905838. http://www.hindawi.com/journals/jnm/2016/4905838/

  9. M. Yilmaz, Y. Kilinc, G. Nadar, Z. Tasdemir, N. Wollschlöger, W. Österle, Y. Leblebici, B.E. Alaca, J. Vacuum Sci. Technol. B 35(2), 022001 (2017). https://doi.org/10.1116/1.4978047. http://avs.scitation.org/doi/10.1116/1.4978047

  10. M. Nasr Esfahani, Y. Leblebici, B.E. Alaca, J. Microelectromech. Syst. 26(3), 624 (2017). https://doi.org/10.1109/JMEMS.2017.2679219

  11. A. Heidelberg, L.T. Ngo, B. Wu, M.A. Phillips, S. Sharma, T.I. Kamins, J.E. Sader, J.J. Boland, Nano Lett. 6(6), 1101 (2006). https://doi.org/10.1021/nl060028u. https://pubs.acs.org/doi/10.1021/nl060028u

  12. Y.E. Yaish, Y. Calahorra, O. Shtempluck, V. Kotchetkov, J. Appl. Phys. 117(16), 164311 (2015). https://doi.org/10.1063/1.4919017. http://aip.scitation.org/doi/10.1063/1.4919017

  13. S.D. Hudson, V. Zhurov, V. Grbić, M. Grbić, J.L. Hutter, J. Appl. Phys. 113(15), 154307 (2013). https://doi.org/10.1063/1.4800865. http://aip.scitation.org/doi/10.1063/1.4800865

  14. H.F. Zhan, Y.T. Gu, J. Appl. Phys. 111(8), 084305 (2012). https://doi.org/10.1063/1.3703673. http://aip.scitation.org/doi/10.1063/1.3703673

  15. I.D. Wolf, Semicond. Sci. Technol. 11(2), 139 (1996). https://doi.org/10.1088/0268-1242/11/2/001. https://iopscience.iop.org/article/10.1088/0268-1242/11/2/001

  16. M.J. Süess, R.A. Minamisawa, R. Geiger, K.K. Bourdelle, H. Sigg, R. Spolenak, Nano Lett. 14(3), 1249 (2014). https://doi.org/10.1021/nl404152r. https://pubs.acs.org/doi/10.1021/nl404152r

  17. S. Izumi, S. Hara, T. Kumagai, S. Sakai, Thin Solid Films 467(1–2), 253 (2004). https://doi.org/10.1016/j.tsf.2004.03.034

    Article  CAS  Google Scholar 

  18. R.E. Miller, V.B. Shenoy, Nanotechnology 11(3), 139 (2000). https://doi.org/10.1088/0957-4484/11/3/301. https://iopscience.iop.org/article/10.1088/0957-4484/11/3/301

  19. C. Melis, S. Giordano, L. Colombo, G. Mana, Metrologia 53(6), 1339 (2016) . https://doi.org/10.1088/0026-1394/53/6/1339. https://iopscience.iop.org/article/10.1088/0026-1394/53/6/1339

  20. D. Quagliotti, G. Mana, E. Massa, C. Sasso, U. Kuetgens, Metrologia 50(3), 243 (2013). https://doi.org/10.1088/0026-1394/50/3/243. https://iopscience.iop.org/article/10.1088/0026-1394/50/3/243

  21. G. Pennelli, M. Totaro, A. Nannini, ACS Nano 6(12), 10727 (2012). https://doi.org/10.1021/nn304094b. https://pubs.acs.org/doi/10.1021/nn304094b

  22. H. Sadeghian, C. Yang, J. Goosen, E. Van Der Drift, A. Bossche, P. French, F. Van Keulen, Appl. Phys. Lett. 94(22), 221903 (2009)

    Article  Google Scholar 

  23. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9(10), 18 (2006)

    Article  CAS  Google Scholar 

  24. T. Tsuchiya, T. Hemmi, J.V. Suzuki, Y. Hirai, O. Tabata, Appl. Sci. 8(6), 880 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Erdem Alaca.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare Pakzad, S., Nasr Esfahani, M., Tasdemir, Z. et al. A new characterization approach to study the mechanical behavior of silicon nanowires. MRS Advances 6, 500–505 (2021). https://doi.org/10.1557/s43580-021-00117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00117-x

Navigation