Skip to main content
Log in

Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we study the synthesis dependence of structural, optical and antimicrobial properties for copper oxide nanoparticles on, synthesized using microwave irradiation CuO(M), co-precipitation CuO(P) and hydrothermal CuO(H) protocols. Structural and morphological properties were studied using XRD, SEM, TEM and SAED techniques. XPS studies confirmed the presence of copper ions in Cu2+ oxidation state, and Raman spectroscopy confirmed the presence of nanostructured phase in all the samples. The synthesized CuO(M), CuO(P) and CuO(H) nanoparticles were investigated for antimicrobial activity against different pathogenic bacteria including methicillin-resistant Staphylococcus aureus. The result showed that maximum inhibition zone was detected in CuO(M) nanoparticles against Gram-negative bacteria i.e. Klebsiella pneumoniae (20 mm). CuO(H) and CuO(P) nanoparticles have antibacterial inhibition zone of 17 mm and 13 mm against K. pneumoniae and S. aureus, respectively. The CuO(P) and CuO(H) nanoparticles displayed mild antimicrobial activity as compared to the CuO(M) nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and in supplementary file.

References

  1. Y. Liu, Q. Huang, G. Jiang, D. Liu, W. Yu, Cu 2 O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 32, 3605–3615 (2017)

    Article  CAS  Google Scholar 

  2. K. Vishveshvar, M.A. Krishnan, K. Haribabu, S. Vishnuprasad, Green synthesis of copper oxide nanoparticles using ixiro coccinea plant leaves and its characterization. BioNanoScience 8, 554–558 (2018)

    Article  Google Scholar 

  3. M. Khan, M.R. Shaik, S.F. Adil, M. Kuniyil, M. Ashraf, H. Frerichs et al., Facile synthesis of Pd@ graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci. Rep. 10, 1–14 (2020)

    CAS  Google Scholar 

  4. K. Gherab, Y. Al-Douri, U. Hashim, M. Ameri, A. Bouhemadou, K.M. Batoo et al., Fabrication and characterizations of Al nanoparticles doped ZnO nanostructures-based integrated electrochemical biosensor. J. Market. Res. 9, 857–867 (2020)

    CAS  Google Scholar 

  5. S.M. Boddapati, J.M.R. Saketi, B.R. Mutchu, H.B. Bollikolla, S.F. Adil, M. Khan, Copper promoted desulfurization and CN cross coupling reactions: Simple approach to the synthesis of substituted 2-aminobenzoxazoles and 2, 5-disubstituted tetrazole amines. Arab. J. Chem. 13, 4477–4494 (2020)

    Article  CAS  Google Scholar 

  6. S.F. Adil, M.E. Assal, M.R. Shaik, M. Kuniyil, N.M. AlOtaibi, M. Khan et al., A facile synthesis of ZrOx-MnCO3/graphene oxide (GRO) nanocomposites for the oxidation of alcohols using molecular oxygen under base free conditions. Catalysts 9, 759 (2019)

    Article  CAS  Google Scholar 

  7. S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)

    Article  CAS  Google Scholar 

  8. S. Kumar, W. Ahlawat, G. Bhanjana, S. Heydarifard, M.M. Nazhad, N. Dilbaghi, Nanotechnology-based water treatment strategies. J. Nanosci. Nanotechnol. 14, 1838–1858 (2014)

    Article  CAS  Google Scholar 

  9. N.D. Mu’azu, N. Jarrah, M. Zubair, M.S. Manzar, T.S. Kazeem, A. Qureshi et al., Mechanistic aspects of magnetic MgAlNi barium-ferrite nanocomposites enhanced adsorptive removal of an anionic dye from aqueous phase. J. Saudi Chem. Soc. 24, 715–732 (2020)

    Article  CAS  Google Scholar 

  10. S. Saif, A. Tahir, T. Asim, Y. Chen, S.F. Adil, Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using terminalia chebula leaf extract for enhanced adsorption of arsenic (V) from water. Colloids Interfaces 3, 17 (2019)

    Article  CAS  Google Scholar 

  11. M. Signoretto, F. Menegazzo, A. Di Michele, E. Fioriniello, Effects of support and synthetic procedure for sol-immobilized Au nanoparticles. Catalysts 6, 87 (2016)

    Article  CAS  Google Scholar 

  12. M.S. Bakshi, How surfactants control crystal growth of nanomaterials. Cryst. Growth Des. 16, 1104–1133 (2016)

    Article  CAS  Google Scholar 

  13. Y. Li, C. Li, B. Wang, W. Li, P. Che, A comparative study on the thermoelectric properties of CoSb3 prepared by hydrothermal and solvothermal route. J. Alloy. Compd. 772, 770–774 (2019)

    Article  CAS  Google Scholar 

  14. J.Y. Cheon, S.J. Kim, Y.H. Rhee, O.H. Kwon, W.H. Park, Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed. 14, 2773 (2019)

    Article  CAS  Google Scholar 

  15. J.J. Lv, M.Y. Li, and Q.X. Zeng, Preparation and characterization of copper oxide and copper nanoparticles. in Advanced Materials Research, 2011, pp. 715–721

  16. N. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 6, 933–939 (2016)

    Article  CAS  Google Scholar 

  17. J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloy. Compd. 632, 321–325 (2015)

    Article  CAS  Google Scholar 

  18. O. Waser, M. Hess, A. Grntner, P. Novßk, S.E. Pratsinis, Size controlled CuO nanoparticles for Li-ion batteries. J. Power Sources 241, 415–422 (2013)

    Article  CAS  Google Scholar 

  19. F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng et al., A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 6, 79343–79349 (2016)

    Article  CAS  Google Scholar 

  20. M. Shahmiri, N.A. Ibrahim, F. Shayesteh, N. Asim, N. Motallebi, Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. J. Mater. Res. 28, 3109 (2013)

    Article  CAS  Google Scholar 

  21. P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4, 86 (2014)

    Article  Google Scholar 

  22. C. Boruban, E.N. Esenturk, Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties. J. Mater. Res. 32, 3669 (2017)

    Article  CAS  Google Scholar 

  23. G. Mustafa, H. Tahir, M. Sultan, N. Akhtar, Synthesis and characterization of cupric oxide (CuO) nanoparticles and their application for the removal of dyes. Afr. J. Biotechnol. 12, 6650–6660 (2013)

    Article  CAS  Google Scholar 

  24. R. Sankar, R. Maheswari, S. Karthik, K.S. Shivashangari, V. Ravikumar, Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater. Sci. Eng. C 44, 234–239 (2014)

    Article  CAS  Google Scholar 

  25. A. Hussain, M.F. AlAjmi, M.T. Rehman, S. Amir, F.M. Husain, A. Alsalme et al., Copper (II) complexes as potential anticancer and nonsteroidal anti-inflammatory agents: in vitro and in vivo studies. Sci. Rep. 9, 1–17 (2019)

    Article  Google Scholar 

  26. C.L. Carnes, K.J. Klabunde, The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J. Mol. Catal. A 194, 227–236 (2003)

    Article  CAS  Google Scholar 

  27. L. Sun, Z. Zhang, Z. Wang, Z. Wu, H. Dang, Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater. Res. Bull. 40, 1024–1027 (2005)

    Article  CAS  Google Scholar 

  28. P. Saravanan, S. Alam, G. Mathur, A liquid−liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films 491, 168–172 (2005)

    Article  CAS  Google Scholar 

  29. T. Ahmad, R. Chopra, K. Ramanujachary, S. Lofland, A. Ganguli, Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Solid State Sci. 7, 891–895 (2005)

    Article  CAS  Google Scholar 

  30. V.V.T. Padil, M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889 (2013)

    Google Scholar 

  31. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Boston, 1956).

    Google Scholar 

  32. E.E. Kaya, S. Gürmen, A straightforward approach for the synthesis of nanostructured Y2O3 particles: synthesis, morphology, microstructure and crystal imperfection. Phys. E. 115, 113668 (2020)

    Article  CAS  Google Scholar 

  33. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theoret. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  34. G. Rajender, P. Giri, Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J. Alloy. Compd. 676, 591–600 (2016)

    Article  CAS  Google Scholar 

  35. A. Chauhan, R. Verma, S. Kumari, A. Sharma, P. Shandilya, X. Li et al., Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 10, 1–16 (2020)

    Article  CAS  Google Scholar 

  36. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theoret. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  37. Y. Asakuma, M. Miura, Effect of microwave radiation on diffusion behavior of anti-solvent during crystallization. J. Cryst. Growth 402, 32–36 (2014)

    Article  CAS  Google Scholar 

  38. Y. Wang, Y. Lü, W. Zhan, Z. Xie, Q. Kuang, L. Zheng, Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A 3, 12796–12803 (2015)

    Article  CAS  Google Scholar 

  39. R. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic sensor. Sens. Actuators B 169, 199–207 (2012)

    Article  CAS  Google Scholar 

  40. D.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Precipitation method and characterization of cobalt oxide nanoparticles. Appl. Phys. A 123, 264 (2017)

    Article  CAS  Google Scholar 

  41. H. Siddiqui, M. Qureshi, F.Z. Haque, Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik 127, 4726–4730 (2016)

    Article  CAS  Google Scholar 

  42. M. Dar, Q. Ahsanulhaq, Y. Kim, J. Sohn, W. Kim, H. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Appl. Surf. Sci. 255, 6279–6284 (2009)

    Article  CAS  Google Scholar 

  43. J.D. Rodney, S. Deepapriya, P.A. Vinosha, S. Krishnan, S.J. Priscilla, R. Daniel et al., Photo-Fenton degradation of nano-structured La doped CuO nanoparticles synthesized by combustion technique. Optik 161, 204–216 (2018)

    Article  CAS  Google Scholar 

  44. H. Siddiqui, M.R. Parra, F.Z. Haque, Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique. J. Sol-Gel. Sci. Technol. 87, 125–135 (2018)

    Article  CAS  Google Scholar 

  45. A. Bhaumik, A.M. Shearin, R. Patel, K. Ghosh, Significant enhancement of optical absorption through nano-structuring of copper based oxide semiconductors: possible future materials for solar energy applications. Phys. Chem. Chem. Phys. 16, 11054–11066 (2014)

    Article  CAS  Google Scholar 

  46. J. Irwin, T. Wei, Raman scattering investigation of Cu18O. J. Phys. 3, 299 (1991)

    CAS  Google Scholar 

  47. J. Xu, W. Ji, Z. Shen, W. Li, S. Tang, X. Ye et al., Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 30, 413–415 (1999)

    Article  CAS  Google Scholar 

  48. M. Rashad, M. Rüsing, G. Berth, K. Lischka, and A. Pawlis, CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013 (2013)

  49. Z.N. Kayani, M. Umer, S. Riaz, S. Naseem, Characterization of copper oxide nanoparticles fabricated by the sol–gel method. J. Electron. Mater. 44, 3704–3709 (2015)

    Article  CAS  Google Scholar 

  50. R. Jana, A. Dey, M. Das, J. Datta, P. Das, P.P. Ray, Improving performance of device made up of CuO nanoparticles synthesized by hydrothermal over the reflux method. Appl. Surf. Sci. 452, 155–164 (2018)

    Article  CAS  Google Scholar 

  51. A. Bhattacharjee, M. Ahmaruzzaman, Microwave assisted facile and green route for synthesis of CuO nanoleaves and their efficacy as a catalyst for reduction and degradation of hazardous organic compounds. J. Photochem. Photobiol. A 353, 215–228 (2018)

    Article  CAS  Google Scholar 

  52. X. Wu, L. Ye, K. Liu, W. Wang, J. Wei, F. Chen et al., Antibacterial properties of mesoporous copper-doped silica xerogels. Biomed. Mater. 4, 045008 (2009)

    Article  CAS  Google Scholar 

  53. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011)

    Article  CAS  Google Scholar 

  54. J.E. Weckx, H.M. Clijsters, Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol. Plant. 96, 506–512 (1996)

    Article  CAS  Google Scholar 

  55. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    Article  CAS  Google Scholar 

  56. Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang et al., Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24, 4140–4144 (2008)

    Article  CAS  Google Scholar 

  57. A. Abdal Dayem, M.K. Hossain, S.B. Lee, K. Kim, S.K. Saha, G.-M. Yang et al., The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, 120 (2017)

    Article  CAS  Google Scholar 

  58. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar et al., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60, 75–80 (2010)

    Article  CAS  Google Scholar 

  59. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008)

    Article  CAS  Google Scholar 

  60. R. Verma, A. Chauhan, M. Shandilya, X. Li, R. Kumar, S. Kulshrestha, Antimicrobial potential of Ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract. J. Environ. Chem. Eng. 8, 103730 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author K M Batoo is thankful to the Deanship of Scientific Research at King Saud University for financial support through the project Code (RG-1437-030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Mujasam Batoo or Rajesh Kumar.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest among them.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Verma, R., Batoo, K.M. et al. Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. Journal of Materials Research 36, 1496–1509 (2021). https://doi.org/10.1557/s43578-021-00193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00193-7

Keywords

Navigation