Skip to main content
Log in

Linear measurements of nanomechanical phenomena using small-amplitude AFM

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Dynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, C. F. Quate, and C.H. Gerber, Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. F.J. Giessibl, Science 267, 68 (1995).

    Article  CAS  Google Scholar 

  3. There is a sizeable number of papers on these issues. One of the first was: F.J. Giessibl, Phys. Rev. B 56, 16010 (1997). One of the latest papers is: J.E. Sader and S.P. Jarvis, Phys.Rev. B 70, 012303 (2004).

  4. M. Guggisberg, M. Bammerlin, C.H. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Mayer, and H.-J. Güntherodt, Phys. Rev. B 61, 11151 (2000).

    Article  CAS  Google Scholar 

  5. P. M. Hoffmann, Appl. Surf. Sci. 210, 140 (2003); P. M. Hoffmann, Small-amplitude atomic force microscopy, in Encyclopedia of Nanotechnology, Dekker (2004).

    Article  CAS  Google Scholar 

  6. S. P. Jarvis, H. Yamada, S.-I. Yamamoto, H. Tokumoto, and J. B. Pethica, Nature 384, 247 (1996).

    Article  CAS  Google Scholar 

  7. P. M. Hoffmann, A. Oral, R. A. Grimble, H. O. Ozer, S. Jeffery, and J. B. Pethica, Proc. R. Soc. Lond. A 457, 1161 (2001).

    Article  CAS  Google Scholar 

  8. D. Rugar, H. J. Mamin, R. Erlandsson, J. E. Stern, and B. D. Terris, Rev. Sci. Instrum. 59, 2337 (1988).

    Article  CAS  Google Scholar 

  9. A. Oral, R. A. Grimble, H. Ö. Özer, and J. B. Pethica, Rev. Sci. Instr. 74, 3656 (2003).

    Article  CAS  Google Scholar 

  10. R. Pérez, I. Stich, M. C. Payne, and K. Terakura, Phys. Rev. B 58, 10835 (1998).

    Article  Google Scholar 

  11. A. Oral, R. A. Grimble, H. Ö. Özer, P. M. Hoffmann, and J. B. Pethica, Appl. Phys. Lett. 79, 1915 (2001).

    Article  CAS  Google Scholar 

  12. P. M. Hoffmann, S. Jeffery, J. B. Pethica, H. Ö. Özer, and A. Oral, Phys. Rev. Lett. 87, 265502 (2001).

    Article  CAS  Google Scholar 

  13. J. N. Israelachvili, Intermolecular & Surface Forces, Academic Press, London, 1992.

    Google Scholar 

  14. For example: S. J. O’Shea, M. E. Welland, and T. Rayment, Appl. Phys. Lett. 60, 2356 (1992).

  15. S. Jeffery, P. M. Hoffmann, J. B. Pethica, C. Ramanujan, H. Ö. Özer, and A. Oral, Phys. Rev. B 70, 054114 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by the Research Corporation and the National Science Foundation (NSF-CAREER, NSF-MRI).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, P.M., Patil, S., Matei, G. et al. Linear measurements of nanomechanical phenomena using small-amplitude AFM. MRS Online Proceedings Library 838, 151–156 (2004). https://doi.org/10.1557/PROC-838-O1.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-838-O1.8

Navigation