Skip to main content
Log in

Lithium Dendrite Growth Control Using Local Temperature Variation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have quantified lithium dendrite growth in an optically accessible symmetric Li-metal cell, charged under imposed temperatures on the electrode surface. We have found that the dendrite length measure is reduced up to 43% upon increasing anodic temperature of about 50°C. We have deduced that imposing higher temperature on the electrode surface will augment the reduction rate relative to dendritic peaks and therefore lithium holes can draw near with the sharp deposited tips. We have addressed this mechanism via fundamentals of electrochemical transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359–367.

    Article  CAS  Google Scholar 

  2. Armand M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652–657.

    Article  CAS  Google Scholar 

  3. Williard N., {etet al.}, Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability. Energies, 2013. 6(9): p. 4682–4695.

    Article  Google Scholar 

  4. Xu K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews-Columbus, 2004. 104(10): p. 4303–4418.

    Article  CAS  Google Scholar 

  5. Aryanfar A., {etet al.}, Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. The Journal of Physical Chemistry Letters, 2014: p. 1721–1726.

    Google Scholar 

  6. Mayers M.Z., J.W. Kaminski, and T.F. Miller III, Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. The Journal of Physical Chemistry C, 2012. 116(50): p. 26214–26221.

    Article  CAS  Google Scholar 

  7. Orsini F., A.D.P., B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuisen, E.D. Beer, P. Notten, In Situ Scanning Electron Microscopy (SEM) observation of interfaces with plastic lithium batteries. Journal of power sources, 1998. 76: p. 19–29.

    Article  CAS  Google Scholar 

  8. Monroe C. and J. Newman, Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions. Journal of the Electrochemical Society, 2003. 150(10): p. A1377–A1384.

    Article  CAS  Google Scholar 

  9. Nishida T., {etet al.}, Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 2013.

    Google Scholar 

  10. Monroe C. and J. Newman, The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 2004. 151(6): p. A880–A886.

    Article  CAS  Google Scholar 

  11. Aurbach D., {etet al.}, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002. 148(3): p. 405–416.

    Article  CAS  Google Scholar 

  12. Liu X.H., {etet al.}, Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 2011. 98(18).

    Google Scholar 

  13. Crowther O. and A.C. West, Effect of electrolyte composition on lithium dendrite growth. Journal of the Electrochemical Society, 2008. 155(11): p. A806–A811.

    Article  CAS  Google Scholar 

  14. Schweikert N., {etet al.}, Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ Li-7 nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2013. 228: p. 237–243.

    Article  CAS  Google Scholar 

  15. Howlett P.C., D.R. MacFarlane, and A.F. Hollenkamp, A sealed optical cell for the study of lithium-electrode electrolyte interfaces. Journal of Power Sources, 2003. 114(2): p. 277–284.

    Article  CAS  Google Scholar 

  16. Rosso M., {etet al.}, Onset of dendritic growth in lithium/polymer cells. Journal of Power Sources, 2001. 97-8: p. 804–806.

    Google Scholar 

  17. Seong I.W., {etet al.}, The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2008. 178(2): p. 769–773.

    Article  CAS  Google Scholar 

  18. Stone G., {etet al.}, Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society, 2012. 159(3): p. A222–A227.

    Google Scholar 

  19. Brissot C., {etet al.}, In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. Journal of the Electrochemical Society, 1999. 146(12): p. 4393–4400.

    Article  CAS  Google Scholar 

  20. Brissot C., {etet al.}, Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 1999. 81: p. 925–929.

    Article  Google Scholar 

  21. Chazalviel J.N., Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits. Physical Review A, 1990. 42(12): p. 7355–7367.

    Article  CAS  Google Scholar 

  22. Park H.E., C.H. Hong, and W.Y. Yoon, The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of Power Sources, 2008. 178(2): p. 765–768.

    Article  CAS  Google Scholar 

  23. Diggle J., A. Despic, and J.M. Bockris, The mechanism of the dendritic electrocrystallization of zinc. Journal of The Electrochemical Society, 1969. 116(11): p. 1503–1514.

    Article  CAS  Google Scholar 

  24. Brissot C., {etet al.}, Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. Journal of Power Sources, 2001. 94(2): p. 212–218.

    Article  CAS  Google Scholar 

  25. Bard A.J., and Larry R. Faulkner, Electrochemical methods: fundamentals and applications. 1980. 2 New York: Wiley, 1980.

    Google Scholar 

  26. Akolkar R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 84–89.

    Article  CAS  Google Scholar 

Download references

acknowledgments

The authors acknowledge financial support from Bill and Melinda Gates Foundation Grant No. OPP1069500 on environmental sustainability and energy conservation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Aryanfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryanfar, A., Colussi, A.J. & Hoffmann, M.R. Lithium Dendrite Growth Control Using Local Temperature Variation. MRS Online Proceedings Library 1680, 13–18 (2014). https://doi.org/10.1557/opl.2014.890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.890

Navigation