Skip to main content
Log in

Charge Transport through Methylated DNA Strand

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Charge transport through an eight-base pair methylated DNA strand and its native counterpart have been investigated. We focus on three factors, contact coupling, decoherence and temperature, which can contribute to DNA charge transport. Our results show that with the same choice of contact coupling, in the phase-coherent limit the transmission of the methylated strand is smaller in the bandgap at energies close to the highest occupied molecular orbital (HOMO), while inside the HOMO band, the transmission is oscillatory and the methylated DNA may have a larger transmission in certain energy windows. The trend in transmission also holds in the presence of the decoherence though there is a crossover in the transmission of the native and methylated strands away from the HOMO level. We also find that the transport depends on the strength of contact coupling and the measurement temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Robertson, Oncogene 20, 3139, (2001).

    Article  CAS  Google Scholar 

  2. K. J. Vining, K. R. Pomraning, L. J. Wilhelm, H. D. Priest, M. Pellegrini, T. C. Mockler, M. Freitag and S. H. Strauss, BMC Genomics 13, 27, (2012).

    Article  CAS  Google Scholar 

  3. T. A. Hore, R. W. Rapkins and J. A. M Graves, Trends Genet. 23, 440, (2007).

    Article  CAS  Google Scholar 

  4. P. M. Das and R. Singal, J. Clin. Oncol. 22, 4632, (2004).

    Article  CAS  Google Scholar 

  5. C. Bock, E. M. Tomazou, A. B. Brinkman, F. Muller, F. Simmer, H. Gu, N. Jager, A. Gnirke, H. G. Stunnenberg and A. Meissner, Nat. Biotechnol, 28, 1106, (2010).

    Article  CAS  Google Scholar 

  6. M. Tsutsui, K. Matsubara, T. Ohshiro, M. Furuhashi, M. Taniguchi and T. Kawai, J. Am. Chem. Soc. 133, 9124, (2011).

    Article  CAS  Google Scholar 

  7. J. Hihath, S. Guo, P. Zhang and N. Tao, J. Phys.: Condens. Matter 24, 164204, (2012).

    Google Scholar 

  8. A. K. Boal, J. K. Barton, Bioconj. Chem. 16, 312 (2005).

    Article  CAS  Google Scholar 

  9. N. B. Muren and J. K. Barton J. Am. Chem. Soc. 135, 16632 (2013).

    Article  CAS  Google Scholar 

  10. T. Macke and D. Case, in Molecular Modeling of Nucleic Acids, edited by N. B. Leontes and J. SantaLucia Jr. (American Chemical Society: Washington, DC, 1998), pp. 379.

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, {etet al.}, Gaussian 09. Gaussian, Inc.: Wallingford, CT, (2009).

    Google Scholar 

  12. P. Lowdin, J. Chem. Phys. 18, 365, (1950).

    Article  CAS  Google Scholar 

  13. M. Buttike, Phys. Rev. Lett. 57, 1761, (1986).

    Article  Google Scholar 

  14. J. Qi, N. Edirisinghe, M. G. Rabbani and M. P. Anantram, Phys. Rev. B 87, 085404, (2013).

    Article  Google Scholar 

Download references

acknowledgments

This work is supported by the National Science Foundation under Grant No. 102781. The authors would like to thank Professor Joshua Hihath at University of California, Davis for extensive discussions on experimental conductance measurements of DNA strands.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Anantram, M.P. Charge Transport through Methylated DNA Strand. MRS Online Proceedings Library 1689, 7–12 (2014). https://doi.org/10.1557/opl.2014.595

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.595

Navigation