Skip to main content
Log in

Linear Polarization Rotation Study of the Microwave-Induced Magnetoresistance Oscillations in the GaAs/AlGaAs System

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Microwave-induced zero-resistance states appear when the associated B-1-periodic magnetoresistance oscillations grow in amplitude and become comparable to the dark resistance of the two-dimensional electron system (2DES). Existing theories have made differing predictions regarding the influence of the microwave polarization in this phenomenon. We have investigated the effect of rotating, in-situ, the polarization of linearly polarized microwaves relative to long-axis of Hall bars. The results indicate that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwave electric field and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance Rxx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. Interestingly, the phase shift θ0 for maximal oscillatory Rxx response under photoexcitation is a strong function of the magnetic field, the extremum in question, and the magnetic field orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson, and V. Umansky, Nature (London) 420, 646 (2002); Phys. Rev. Lett. 92, 146801 (2004); Phys. Rev. B 69, 193304 (2004); ibid. 69, 161306 (2004); ibid. 70, 155310 (2004).

    Article  CAS  Google Scholar 

  2. M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 90, 046807 (2003).

    Article  CAS  Google Scholar 

  3. R. G. Mani, Physica E (Amsterdam) 22, 1 (2004); ibid. 25, 189 (2004); Appl. Phys. Lett. 85, 4962 (2004).

    Article  CAS  Google Scholar 

  4. S. A. Studenikin, M. Potemski, P. T. Coleridge, A. S. Sachrajda, and Z. R. Wasilewski, Sol. St. Comm. 129, 341 (2004); S. Studenikin et al., Phys. Rev. B 71, 245313 (2005).

    Article  CAS  Google Scholar 

  5. A. E. Kovalev, S. A. Zvyagin, C. R. Bowers, J. L. Reno, J. A. Simmons, Sol. St. Comm. 130, 379 (2004).

    Article  CAS  Google Scholar 

  6. R. L. Willett, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 93, 026804 (2004).

    Article  CAS  Google Scholar 

  7. B. Simovic, C. Ellenberger, K. Ensslin, and W. Wegscheider, Phys. Rev. B 71, 233303 (2005).

    Article  Google Scholar 

  8. J. H. Smet, B. Gorshunov, C. Jiang, L. Pfeiffer, K. West, V. Umansky, M. Dressel, R. Meisels, F. Kuchar, and K. von Klitzing, Phys. Rev. Lett. 95, 116804 (2005).

    Article  CAS  Google Scholar 

  9. K. Stone, C. L. Yang, Z. Q. Yuan, R. R. Du, L. N. Pfeiffer and K. W. West, Phys. Rev. B 76, 153306 (2007).

    Article  Google Scholar 

  10. D. Konstantinov and K. Kono, Phys. Rev. Lett. 103, 266808 (2009).

    Article  Google Scholar 

  11. Y. H. Dai, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 105, 246802 (2010).

    Article  Google Scholar 

  12. R. G. Mani, C. Gerl, S. Schmult, W. Wegscheider, and V. Umansky, Phys. Rev. B. 81, 125320 (2010); R. G. Mani, W. B. Johnson, V. Umansky, V. Narayanamurti, and K. Ploog, Phys. Rev. B 79, 205320 (2009).

    Article  Google Scholar 

  13. A. N. Ramanayaka, R. G. Mani, and W. Wegscheider, Phys. Rev. B 83, 165303 (2011).

    Article  Google Scholar 

  14. R. G. Mani, A. N. Ramanayaka, and W. Wegscheider, Phys. Rev. B 84, 085308 (2011); A. N. Ramanayaka, R. G. Mani, J. Inarrea, and W. Wegscheider, Phys. Rev. B. 85, 205315 (2012).

    Article  Google Scholar 

  15. A. C. Durst, S. Sachdev, N. Read, and S. M. Girvin, Phys. Rev. Lett. 91, 086803 (2003).

    Article  Google Scholar 

  16. V. Ryzhii and R. Suris, J. Phys.: Cond. Matt. 15, 6855 (2003).

    CAS  Google Scholar 

  17. A. A. Koulakov and M. E. Raikh, Phys. Rev. B 68, 115324 (2003).

    Article  Google Scholar 

  18. X. L. Lei and S. Y. Liu, Phys. Rev. Lett. 91, 226805 (2003).

    Article  CAS  Google Scholar 

  19. I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005).

    Article  Google Scholar 

  20. J. Inarrea and G. Platero, Phys. Rev. Lett. 94, 016806 (2005).

    Article  CAS  Google Scholar 

  21. J. Inarrea and G. Platero, Phys. Rev. B 76, 073311 (2007).

    Article  Google Scholar 

  22. J. Inarrea and G. Platero, J. Phys. Conf. Ser. 210, 012042 (2010).

    Article  Google Scholar 

  23. A. D. Chepelianskii, A. S. Pikovsky, and D. L. Shepelyansky, Eur. Phys. J. B 60, 225 (2007).

    Article  CAS  Google Scholar 

  24. I. G. Finkler and B. I. Halperin, Phys. Rev. B 79, 085315 (2009).

    Article  Google Scholar 

  25. I. A. Dmitriev, M. Khodas, A. D. Mirlin, D. G. Polyakov, and M. G. Vavilov, Phys. Rev. B 80, 165327 (2009).

    Article  Google Scholar 

  26. D. Hagenmuller, S. de Librato, and C. Ciuti, Phys. Rev. B 81, 235303 (2010).

    Article  Google Scholar 

  27. N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490 (2011).

    Article  CAS  Google Scholar 

  28. Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, arXiv:1106.0302v1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanayaka, A.N., Ye, T., Liu, HC. et al. Linear Polarization Rotation Study of the Microwave-Induced Magnetoresistance Oscillations in the GaAs/AlGaAs System. MRS Online Proceedings Library 1617, 25–30 (2013). https://doi.org/10.1557/opl.2013.1159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.1159

Navigation