Skip to main content
Log in

Influence of Surface Segregation on the Mechanical Property of Metallic Alloy Nanowires

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The influence of surface segregation on the elastic properties of Pt-M (M = Ni, Co, or Fe) nanowires (NWs) are examined by comparing the predicted Young's moduli of the segregated and non-segregated nanowires using density functional theory (DFT) calculations and the computed stress-strain curves under tensile loading using molecular dynamics (MD) simulation method. The moduli of the segregated NWs were found to be higher than that of the non-segregated ones. It is believed that the surface segregation increases the number of Pt-M bonds across the outermost and second surface layers, and thus enhances the Young's modulus of the segregated Pt-M nanowires. MD results confirm our DFT results and it is found that onset of plastic deformation could be altered by the surface segregation process, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surface Segregation Phenomena, P.A. Dowben, A. Miller (Eds.), CRC Press, Boca Raton, Florida, 1990.

    Google Scholar 

  2. G.F. Wang, M.A. van Hove, P.N. Ross, and M.I. Baskes, Prog. Surf. Sci. 79, 28 (2005).

    CAS  Google Scholar 

  3. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic, Science 315, 493 (2007).

    Article  CAS  Google Scholar 

  4. Y. Gauthier, Y. Joly, R. Baudoing, and J. Rundgren, Phys. Rev. B 31, 6216 (1985).

    Article  CAS  Google Scholar 

  5. G.F. Wang, M.A. van Hove, P.N. Ross, and M.I. Baskes, J. Chem. Phys. 122, 024706 (2005).

    Article  Google Scholar 

  6. R. E. Miller and V. B. Shenoy, Nanotechnology 11, 139 (2000).

    Article  CAS  Google Scholar 

  7. G.F. Wang and X.D. Li, J. Appl. Phys. 104, 113517 (2008).

    Article  Google Scholar 

  8. M. T. McDowell, A.M. Leach, K. Gall, Nano Lett. 8, 3613 (2008).

    Article  CAS  Google Scholar 

  9. M.T. McDowell, A.M. Leach, K. Gall, Modell. Simul. Mater. Sci. Eng. 16, 045003 (2008).

    Article  Google Scholar 

  10. D. Huang, P.Z. Qiao, J Aerospace Eng. 24, 147 (2011).

    Article  Google Scholar 

  11. Z. Yang, Z. Lu, and Y-P Zhao, J Appl. Phys. 106, 023537 (2009).

    Article  Google Scholar 

  12. C. Ji and H. S. Park, Nanotechnology 18, 305704 (2007).

    Article  Google Scholar 

  13. A. M. Leach, M. McDowell, and K. Gall, Adv. Funct. Mater. 17, 43 (2007).

    Article  CAS  Google Scholar 

  14. S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Phys. Rev. B 76, 134117 (2007).

    Article  Google Scholar 

  15. B. Lee and R. E. Rudd, Phys. Rev. B 75, 195328 (2007).

    Article  Google Scholar 

  16. L. Ma, J. Wang, J. Zhao, and G. Wang, Chem. Phys. Lett. 452, 183 (2008).

    Article  CAS  Google Scholar 

  17. L. Zhang and H. C. Huang, Appl. Phys. Lett. 89, 183111 (2006).

    Article  Google Scholar 

  18. L. Hung and E. A. Carter, J. Phys. Chem. C 115, 6269 (2011).

    Article  CAS  Google Scholar 

  19. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  20. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  21. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  23. A. Datta, Z. Duan and G.F. Wang Comp. Mater. Sci. 55, 81 (2012).

    Article  CAS  Google Scholar 

  24. S. J. Plimpton, J. Comput. Phys. 117, 1 (1995). http://lammps.sandia.gov

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from Chemical Sciences Research Programs, Office of Basic Energy Sciences, U.S. Department of Energy (Grant no. DE-FG02-11ER16225) and the EERE program of the U.S. Department of Energy (Grant no. DE-AC02-06CH11357). Large-scale DFT computations were carried out at the Center for Simulation and Modeling (SAM) of the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, A., Duan, Z. & Wang, G. Influence of Surface Segregation on the Mechanical Property of Metallic Alloy Nanowires. MRS Online Proceedings Library 1424, 127–132 (2012). https://doi.org/10.1557/opl.2012.679

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.679

Navigation