Skip to main content
Log in

Effect of Oxygen Pressure on the Initial Oxidation Behavior of Cu and Cu-Au Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A wide information gap exists between our present atomic-scale knowledge of metal oxidation derived from conventional ultrahigh vacuum (UHV) surface science experiments and the oxidation mechanisms obtained from the growth of bulk oxide thin films under technologically relevant realistic (or near-) atmospheric conditions. To bridge this pressure gap, we present an in-situ transmission electron microscopy (TEM) study of the initial oxidation stage of Cu(100) and Cu-Au(100) surfaces where the oxygen partial pressure varies from 5x10-4 to 150 Torr. For Cu(100), with increasing oxygen partial pressure (pO2), the nucleation density of the oxide islands increases and so does the growth rate of the oxide islands. As the pO2 continues to increase, a transition from epitaxial cube-on-cube Cu2O islands to randomly oriented oxide islands is observed. A kinetic model based on the classic heterogeneous nucleation theory is developed to explain the effect of oxygen partial pressure on the oxide orientation. It is shown that such a transition in the oxide nucleation orientation is related to the effect of oxygen pressure on the nucleation barrier and atom collision rate. The Cu-Au(111) alloy revealed the same oxygen pressure dependency of the oxide nucleation orientation as pure Cu oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lundgren, J. Gustafson, A. Mikkelsen, J. N. Andersen, A. Stierle, H. Dosch, M. Todorova, J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 92, 046101 (2004).

    Article  CAS  Google Scholar 

  2. J. A. Eastman, P. H. Fuss, L. E. Rehn, P. M. Baldo, G. W. Zhou, D. D. Fong, and L. J. Thompson, Appl. Phys. Lett. 87, 051914 (2005).

    Article  Google Scholar 

  3. K. Lahtonen, M. Hirsimaki, M. Lampimaki, and M. Valden, The Journal of Chemical Physics 129, 124703 (2008).

    Article  CAS  Google Scholar 

  4. I. Lyubinetsky, S. Thevuthasan, D. E. McCready, and D. R. Baer, Journal of Applied Physics 94, 7926 (2003).

    Article  CAS  Google Scholar 

  5. G. W. Zhou, Phys. Rev. B 81, 195440 (2010).

    Article  Google Scholar 

  6. G. W. Zhou, J. C. Yang, Physical Review Letters 89, 106101 (2002).

    Article  Google Scholar 

  7. G. W. Zhou, J. C. Yang, Applied Surface Science 210/3–4, 165 (2003).

    Article  CAS  Google Scholar 

  8. G. W. Zhou, J. C. Yang, Surface Science 531/3, 359 (2003).

    Article  CAS  Google Scholar 

  9. G. W. Zhou, J. C. Yang, Applied Surface Science 222, 357–364 (2004).

    Article  CAS  Google Scholar 

  10. G. W. Zhou, J. C. Yang, Surface Science 559/2–3, 100–110 (2004).

    Article  CAS  Google Scholar 

  11. Langli Luo, Yihong Kang, Zhenyu Liu, Judith C Yang, and Guangwen Zhou, Phys. Rev. B, Accepted on March 2nd, 2011

  12. D. R. Gaskell, “Introduction to Metallurgical Thermodynamics” (Scripta, Washington, D.C., 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L., Kang, Y., Liu, Z. et al. Effect of Oxygen Pressure on the Initial Oxidation Behavior of Cu and Cu-Au Alloys. MRS Online Proceedings Library 1318, 706 (2011). https://doi.org/10.1557/opl.2011.920

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.920

Navigation