Skip to main content

Advertisement

Log in

All-Carbon Composite for Photovoltaics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Graphitic nanomaterials such as graphene, carbon nanotubes (CNT), and C60 fullerenes are promising materials for energy applications because of their extraordinary electrical and optical properties. However, graphitic materials are not readily dispersible in water. Strategies to fabricate all-carbon nanocomposites typically involve covalent linking or surface functionalization, which breaks the conjugated electronic networks or contaminates functional carbon surfaces. Here, we demonstrate a facile surfactant-free strategy to create such all-carbon composites. Fullerenes, unfunctionalized single walled carbon nanotubes, and graphene oxide sheets can be conveniently co-assembled in water, resulting in a stable colloidal dispersion amenable to thin film processing. The thin film composite can be made conductive by mild thermal heating. Photovoltaic devices fabricated using the all-carbon composite as the active layer demonstrated an on-off ratio of nearly 106, an open circuit voltage of 0.59V, and a power conversion efficiency of 0.21%. This photoconductive and photovoltaic response is unprecedented among all-carbon based materials. Therefore, this surfactant-free, aqueous based approach to making all-carbon composites is promising for applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, Y. Fukushima, T. Suna, Y. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Taniguchi, M. Kawai, T.; Aida, T. Science 2006, 314, 1761–1764.

    Article  CAS  Google Scholar 

  2. Nasibulin, A. G. Pikhitsa, P. V. Jiang, H. Brown, D. P. Krasheninnikov, A. V. Anisimov, A. S. Queipo, P. Moisala, A. Gonzalez, D. Lientschnig, G. Hassanien, A. Shandakov, S. D. Lolli, G. Resasco, D. E. Choi, M. Tomanek, D.; Kauppinen, E. I. Nat Nano 2007, 2, 156–161.

    Article  CAS  Google Scholar 

  3. Umeyama, T. Tezuka, N. Fujita, M. Hayashi, S. Kadota, N. Matano, Y.; Imahori, H. Chem. Eur. J. 2008, 14, 4875–4885.

    Article  CAS  Google Scholar 

  4. Kalita, G. Adhikari, S. Aryal, H. R. Umeno, M. Afre, R. Soga, T.; Sharon, M. Appl. Phys. Lett. 2008, 92, 063508.

  5. Yamamoto, Y. Zhang, G. Jin, W. Fukushima, T. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Minari, T. Tsukagoshi, K.; Aida, T. Proceedings of the National Academy of Sciences 2009, 106, 21051–21056.

    Article  CAS  Google Scholar 

  6. Umeyama, T. Tezuka, N. Seki, S. Matano, Y. Nishi, M. Hirao, K. Lehtivuori, H. Tkachenko, N. V. Lemmetyinen, H. Nakao, Y. Sakaki, S.; Imahori, H. Adv. Mater. 2010, 22, 1767–1770.

  7. Zhang, X. Huang, Y. Wang, Y. Ma, Y. Liu, Z.; Chen, Y. Carbon 2009, 47, 334–337.

  8. Zhu, H. Wei, J. Wang, K.; Wu, D. Solar Energy Materials and Solar Cells 2009, 93, 1461–1470.

    Article  CAS  Google Scholar 

  9. Sariciftci, N. S. Smilowitz, L. Heeger, A. J.; Wudl, F. Science 1992, 258, 1474–1476.

    Article  CAS  Google Scholar 

  10. Tans, S. J. Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49–52.

    Article  CAS  Google Scholar 

  11. Dürkop, T. Getty, S. A. Cobas, E.; Fuhrer, M. S. Nano Letters 2004, 4, 35–39.

    Article  Google Scholar 

  12. Gilje, S. Han, S. Wang, M. Wang, K. L.; Kaner, R. B. Nano Letters 2007, 7, 3394–3398.

    Article  CAS  Google Scholar 

  13. Eda, G. Fanchini, G.; Chhowalla, M. Nat Nano 2008, 3, 270–274.

    Article  CAS  Google Scholar 

  14. Arnold, M. S. Zimmerman, J. D. Renshaw, C. K. Xu, X. Lunt, R. R. Austin, C. M.; Forrest, S. R. Nano Letters 2009, 9, 3354–3358.

    Article  CAS  Google Scholar 

  15. Kim, F. Cote, L. J.; Huang, J. Advanced Materials 2010, 22, 1954–1958.

    Article  CAS  Google Scholar 

  16. Kim, J. Cote, L. J. Kim, F. Yuan, W. Shull, K. R.; Huang, J. Journal of the American Chemical Society 2010, 132, 8180–8186.

    Article  CAS  Google Scholar 

  17. Cote, L. J. Kim, J. Tung, V. C. Luo, J. Kim, F.; Huang, J. Pure Appl. Chem. 2011, 83, 95–110.

    Article  CAS  Google Scholar 

  18. Schniepp, H. C. Li, J.-L. McAllister, M. J. Sai, H. Herrera-Alonso, M. Adamson, D. H. Prud’homme, R. K. Car, R. Saville, D. A.; Aksay, I. A. The Journal of Physical Chemistry B 2006, 110, 8535–8539.

  19. Stankovich, S. Dikin, D. A. Dommett, G. H. B. Kohlhaas, K. M. Zimney, E. J. Stach, E. A. Piner, R. D. Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  20. Cote, L. J. Cruz-Silva, R.; Huang, J. Journal of the American Chemical Society 2009, 131, 11027–11032.

    Article  CAS  Google Scholar 

  21. Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.

  22. Cote, L. J. Kim, F.; Huang, J. Journal of the American Chemical Society 2009, 131, 1043–1049.

    Article  CAS  Google Scholar 

  23. Kim, F. Luo, J. Cruz-Silva, R. Cote, L. J. Sohn, K.; Huang, J. Adv. Funct. Mater. 2010, 20, n/a-n/a.

  24. Erickson, K. Erni, R. Lee, Z. Alem, N. Gannett, W.; Zettl, A. Adv. Mater. 2010, n/a-n/a.

  25. Hare, J. P. Kroto, H. W.; Taylor, R. Chemical Physics Letters 1991, 177, 394–398.

    Article  CAS  Google Scholar 

  26. Ausman, K. D. Piner, R. Lourie, O. Ruoff, R. S.; Korobov, M. The Journal of Physical Chemistry B 2000, 104, 8911–8915.

    Article  CAS  Google Scholar 

  27. Li, D. Muller, M. B. Gilje, S. Kaner, R. B.; Wallace, G. G. Nat Nano 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  28. Dresselhaus, M. S. Jorio, A. Hofmann, M. Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751–758.

    Article  CAS  Google Scholar 

  29. Sato, N. Saito, Y.; Shinohara, H. Chemical Physics 1992, 162, 433–438.

    Article  CAS  Google Scholar 

  30. Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1993, 71, 133.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A.T.L., Tung, V.C., Kim, J. et al. All-Carbon Composite for Photovoltaics. MRS Online Proceedings Library 1344, 1036 (2011). https://doi.org/10.1557/opl.2011.1368

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1368

Navigation