Skip to main content
Log in

Fabrication of Crystalline Semiconductor Nanowires by Vapor-Liquid-Solid Glancing Angle Deposition (VLS-GLAD) Technique

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Vapor-liquid-solid (VLS) method has become one of the few and most powerful bottom-up single crystal nanowire growth techniques in nanotechnology due to its easy scalability from micro to nano feature sizes, high throughput, relatively low cost, and its applicability to various semiconductor materials. On the other hand, control of growth direction and crystal orientation of nanowires, which determine their electrical, optical, and mechanical properties, stand as major issues in VLS technique. In this study, we demonstrate a new vapor-liquid-solid glancing angle deposition (VLS-GLAD) fabrication approach to produce crystalline semiconductor nanowires with controlled geometry. VLS-GLAD is a physical vapor deposition nanowire fabrication approach based on selective deposition of nanowire source atoms onto metal catalyst nanoislands placed on a crystal wafer. In this technique, collimated obliquely incident flux of source atoms selectively deposit on catalyst islands by using “shadowing effect”. Geometrical showing effect combined with conventional VLS growth mechanism leads to the growth of tilted crystalline semiconductor nanowire arrays. In this study, we report morphological and structural properties of tilted single crystal germanium nanowire arrays fabricated by utilizing a conventional thermal evaporation system. In addition to the tilted geometry, by introducing substrate rotation, nanowires with various morphologies including helical, zig-zag, or vertical shapes can be fabricated. Engineering crystalline nanowire morphology by using VLS-GLAD have the potential of enabling control of optical, electrical, and mechanical properties of these nanostructures leading to the development of novel 3D nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Alivisatos, Science 271, 5251 (1996).

    Article  Google Scholar 

  2. V. Schmidt, J. V. Wittemann, S. Senz, and U. Gosele, Adv Mater 21, 25–26 (2009).

    Google Scholar 

  3. A. K. Geim, Science 324, 5934 (2009).

    Article  Google Scholar 

  4. R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4, 5 (1964).

    Article  Google Scholar 

  5. R. S. Wagner, and W. C. Ellis, Transactions of the Metallurgical Society of Aime 233, 6 (1965).

    Google Scholar 

  6. R. S. Wagner, and C. J. Doherty, J. Electrochem. Soc. 113, 12 (1966).

    Article  Google Scholar 

  7. A. M. Morales, and C. M. Lieber, Science 279, 5348 (1998).

    Article  Google Scholar 

  8. X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, Science 316, 5821 (2007).

    Google Scholar 

  9. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature 409, 6816 (2001).

    Article  Google Scholar 

  10. J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Science 293, 5534 (2001).

    Google Scholar 

  11. Y. Cui, and C. M. Lieber, Science 291, 5505 (2001).

    Article  Google Scholar 

  12. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, Science 294, 5545 (2001).

    Google Scholar 

  13. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, Science 293, 5533 (2001).

    Article  Google Scholar 

  14. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nature Materials 4, 6 (2005).

    Article  Google Scholar 

  15. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91, 23 (2007).

    Article  Google Scholar 

  16. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Letters 8, 2 (2008).

    Article  Google Scholar 

  17. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. L. S. Dang, Nanotechnology 20, 33 (2009).

    Article  Google Scholar 

  18. K. Robbie, and M. J. Brett, Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 15, 3 (1997).

    Article  Google Scholar 

  19. T. Karabacak, J. P. Singh, Y. P. Zhao, G. C. Wang, and T. M. Lu, Phys. Rev. B 68, 12 (2003).

    Article  Google Scholar 

  20. J. P. Singh, T. Karabacak, D. X. Ye, D. L. Liu, C. Picu, T. M. Lu, and G. C. Wang, J. Vac. Sci. Technol. B 23, 5 (2005).

    Google Scholar 

  21. W. K. Choi, L. Li, H. G. Chew, and F. Zheng, Nanotechnology 18, 38 (2007).

    Google Scholar 

  22. C. Patzig, and B. Rauschenbach, Journal of Vacuum Science & Technology a 26, 4 (2008).

    Article  Google Scholar 

  23. C. H. Chang, P. Yu, and C. S. Yang, Appl. Phys. Lett. 94, 5 (2009).

    Google Scholar 

  24. H. X. Zhang, and P. X. Feng, Journal of Physics D-Applied Physics 42, 2 (2009).

    Google Scholar 

  25. C. L. Haynes, and R. P. Van Duyne, J Phys Chem B 105, 24 (2001).

    Article  Google Scholar 

  26. B. G. Prevo, D. M. Kuncicky, and O. D. Velev, Colloids and Surfaces A-Physicochemical and Engineering Aspects 311, 1–3 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagoz, A.S., Karabacak, T. Fabrication of Crystalline Semiconductor Nanowires by Vapor-Liquid-Solid Glancing Angle Deposition (VLS-GLAD) Technique. MRS Online Proceedings Library 1350, 341 (2011). https://doi.org/10.1557/opl.2011.1005

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1005

Navigation