Skip to main content
Log in

Debris/Micrometeoroid Impacts and Synergistic Effects on Spacecraft Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the last 40 years, the increased space activity created a new form of space environment of hypervelocity objects—space debris—that have no functional use. The space debris, together with naturally occurring ultrahigh velocity meteoroids, presents a significant hazard to spacecraft. Collision with space debris or meteoroids might result in disfunction of external units such as solar cells, affecting materials properties, contaminating optical devices, or destroying satellites. The collision normally results in the formation of additional debris, increasing the hazard for future missions. The hypervelocity debris effect is studied by retrieving materials from space or by using ground simulation facilities. Simulation facilities, which include the light gas gun and Laser Driven Flyer methods, are used for studying the materials degradation due to debris impact. The impact effect could be accelerated when occurring simultaneously with other space environment components, such as atomic oxygen, ultraviolet, or x-ray radiation. Understanding the degradation mechanism might help in developing materials that will withstand the increasing hazard from the space debris, allowing for longer space missions. The large increase in space debris population and the associated risk to space activity requires significant measures to mitigate this hazard. Most current efforts are being devoted to prevention of collisions by keeping track of the larger debris and avoiding formation of new debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Silverman, “Space Environmental Effects on Spacecraft—LEO Material Selection Guide” (NASA Contractor Report No. 4661, Langley Research Center, 1995).

  2. A.C. Tribble, The Space Environment: Implementation for Spacecraft Design (Princeton University Press, New Jersey, 1995).

    Google Scholar 

  3. J. Miao, J.P.W. Stark, Planet. Space Sci. 49, 927 (2001).

    Google Scholar 

  4. J.C. Mandeville, L. Berthoud, Adv. Space Res. 16, 67 (1995).

    Google Scholar 

  5. K.G. Paul, E.B. Igenbergs, L. Berthoud, Int. J. Impact Eng. 20, 627 (1997).

    Google Scholar 

  6. S.G. Love, D.E. Brownlee, N.L. King, F. Horz, Int. J. Impact Eng. 16, 405 (1995).

    Google Scholar 

  7. J.C. Mandeville, Adv. Space Res. 13, 123 (1993).

    Google Scholar 

  8. NASA Langley Research Center, Impact Damage of LDEF Surfaces (http://setas-www.larc.nasa.gov/LDEF/MET_DEB/md_im pact.html), 2001.

  9. Orbital Debris Quarterly News 13, 1 (April 2009).

  10. E.L. Christiansen, J.L. Hyde, R.P. Bernhard, Advances in Space Research 34, 1097 (2004).

    Google Scholar 

  11. D.J. Kessler, R.C. Reynolds, P.D. Anz-Meador, NASA TM-100471 (1988).

  12. C.A. Belk, J.H. Robinson, M.B. Alexander, W.J. Cooke, S.D. Pavelitz, NASA RP-1408 (1997).

  13. H. Klinkrad, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 955 (2007).

    Google Scholar 

  14. A.M. Bradley, L.M. Wein, Adv. Space Res. 43, 1372 (2009).

    Google Scholar 

  15. J. Hyde, E. Christiansen, D. Lear, J. Kerr, F. Lyons, J. Yasensky, Orbital Debris Quarterly News 11 (2007).

  16. V. Jantou, D.S. McPhail, R.J. Chater, A. Kearsley, Appl. Surf. Sci. 252, 7120 (2006).

    Google Scholar 

  17. B.K. Wells, Int. J. Impact Eng. 33, 855 (2006).

    Google Scholar 

  18. H.L.K. Manning, J.M. Gregoire, Int. J. Impact Eng. 33, 402 (2006).

    Google Scholar 

  19. R. Verker, N. Eliaz, I. Gouzman, S. Eliezer, M. Fraenkel, S. Maman, F. Beckmann, K. Pranzas, E. Grossman, Acta Mater. 52, 5539 (2004).

    Google Scholar 

  20. C. Stein, R. Roybal, P. Tlomak, W. Wilson, Space Debris 2, 331 (2000).

    Google Scholar 

  21. M. Grujicic, B. Pandurangan, C.L. Zhao, S.B. Biggers, D.R. Morgan, Appl. Surf. Sci. 252, 5035 (2006).

    Google Scholar 

  22. T. Kadono, Planet. Space Sci. 47, 305 (1999).

    Google Scholar 

  23. J.H. Robinson, A.M. Nolen, Int. J. Impact Eng. 17, 685 (1995).

    Google Scholar 

  24. R. Roybal, P. Tlomak, C. Stein, H. Stokes, Int. J. Impact Eng. 23, 811 (1999).

    Google Scholar 

  25. N. Kawai, Y. Harada, M. Yokoo, T. Atou, K.G. Nakamura, K. Kondo, Int. J. Impact Eng. 35, 1612 (2008).

    Google Scholar 

  26. G. Caprino, V. Lopresto, D. Santoro, Composites Science and Technology 67, 325 (2007).

    Google Scholar 

  27. M. Lambert, F.K. Schäfer, T. Geyer, Int. J. Impact Eng. 26, 369 (2001).

    Google Scholar 

  28. W.L. Cheng, S. Langlie, S. Itoh, Int. J. Impact Eng. 29, 167 (2003).

    Google Scholar 

  29. R.C. Tennyson, G. Shortliffe, 7th Int. Symp. Mater. Space Environ. 399, 485 (1997).

    Google Scholar 

  30. C. Stein, R. Roybal, P. Tlomak, in 8th Int. Symp. Mater. Space Environ., E. Werling, Ed. (CNES Publication, Arcachon, France, 2000).

  31. J.A. Akins, PhD degree thesis, California Institute of Technology (2003).

  32. R. Verker, E. Grossman, I. Gouzman, N. Eliaz, High Perform. Polym. 20, 475 (2008).

    Google Scholar 

  33. R. Verker, E. Grossman, I. Gouzman, N. Eliaz, Polymer 48, 19 (2007).

    Google Scholar 

  34. M.H. Klopffer, B. Flaconneche, Oil & Gas Science And Technology-Revue De L Institut Francais Du Petrole 56, 223 (2001).

    Google Scholar 

  35. A.F. Whitaker, B.Z. Jang, J. Appl. Polym. Sci. 48, 1341 (1993).

    Google Scholar 

  36. R. Klein, M.D. Scheer, J. Phys. Chem. 72, 616 (1968).

    Google Scholar 

  37. E. Grossman, I. Gouzman, G. Lempert, Y. Noter, Y. Lifshitz, J. Spacecr. Rockets 41, 356 (2004).

    Google Scholar 

  38. J.C. Liou, N.L. Johnson, Science 311, 340 (2006).

    Google Scholar 

  39. A. Rossi, G.B. Valsecchi, Celestial Mech. Dyn. Astron. 95, 345 (2006).

    Google Scholar 

  40. F. Alby, B. Deguine, C. Bonnal, P.M. Ratte, in 55th International-Astronautical-Federation Congress (IAF) (Vancouver, Canada, 2006), pp. 3–10.

  41. Technical Report on Space Debris (United Nations Publication, New York, 1999).

  42. NASA Safety Standard, NSS 1740.14 (1995).

  43. V. Adimurthy, A.S. Ganeshan, Acta Astronaut. 58, 168 (2005).

    Google Scholar 

  44. V. Chobotov, N. Melamed, W.H. Ailor, W.S. Campbell, Acta Astronaut. 64, 946 (2009).

    Google Scholar 

  45. J.C. Liou, N.L. Johnson, Acta Astronaut. 64, 236 (2009).

    Google Scholar 

  46. D. Rex, Acta Astronaut. 41, 311 (1997).

    Google Scholar 

  47. D. Rex, Space Policy 14, 95 (1998).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, E., Gouzman, I. & Verker, R. Debris/Micrometeoroid Impacts and Synergistic Effects on Spacecraft Materials. MRS Bulletin 35, 41–47 (2010). https://doi.org/10.1557/mrs2010.615

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.615

Navigation