Skip to main content
Log in

Structural Materials: Understanding Atomic-Scale Microstructures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.K. Miller, J.M. Hyde, M.G. Hetherington, A. Cerezo, G.D.W. Smith, C.M. Elliott, Acta Metall. Mater. 43, 3385 (1995); J.M. Hyde, M.K. Miller, M.G. Hetherington, A. Cerezo, G.D.W. Smith, C.M. Elliott, Acta Metall. Mater. 43, 3415 (1995); 43, 3403 (1995).

    Google Scholar 

  2. F. Danoix, P. Auger, Mat. Charact. 44, 177 (2000).

    Google Scholar 

  3. J.M. Hyde, C.A. English, in Proceedings of MRS 2000 Fall Meeting, Symposium R: Microstructural Processes in Irradiated Materials, Boston, MA, 27–30 November 2000, G.E. Lucas, L. Snead, M.A. Kirk, Jr., R.G. Elliman, Eds., 650, R6.6.1. (Materials Research Society, Pittsburgh, PA, 2001).

    Google Scholar 

  4. M.K. Miller, E.A. Kenik, Microsc. Microanal. 10, 336 (2002).

    Google Scholar 

  5. D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy 95, 215 (2003).

    Google Scholar 

  6. L.T. Stephenson, M.P. Moody, P. V. Liddicoat, S.P. Ringe, Microsc. Microanal. 13, 448 (2007).

    Google Scholar 

  7. M.P. Moody, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, Microsc. Res. Technol. 71, 542 (2008).

    Google Scholar 

  8. M. Murayama, K. Hono, Acta Mater. 47, 1537 (1999).

    Google Scholar 

  9. I. Dutta, S.M. Allen, J. Mater. Sci. Lett. 10, 323 (1991).

    Google Scholar 

  10. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46, 389 (1998).

    Google Scholar 

  11. D.J. Chakrabarti, D.E. Laughlin, Progr. Mater. Sci. 49, 389 (2004).

    Google Scholar 

  12. R.A. Karnesky, M.E. Van Dalen, D.C. Dunand, D.N. Seidman, Scripta Mater. 55, 437 (2006).

    Google Scholar 

  13. C.B. Fuller, D.N. Seidman, Acta Mater. 54, 119 (2006).

    Google Scholar 

  14. J.C. Fisher, Acta Metall. 2, 9 (1954).

    Google Scholar 

  15. I. Kovacs, J. Lendvai, E. Nagy, Acta Metall. 20, 975 (1972).

    Google Scholar 

  16. S.P. Ringer, T. Sakurai, I.J. Polmear, Acta Mater. 45, 3731 (1997).

    Google Scholar 

  17. S.K. Maloney, I.J. Polmear, S.P. Ringer, Mater. Sci. Forum 331–337, 1055 (2000).

    Google Scholar 

  18. E.V. Pereloma, A. Shekhter, M.K. Miller, S.P. Ringer, Acta Mater. 52, 5589 (2004).

    Google Scholar 

  19. M. Murayama, K. Hono, W.F. Miao, D.E. Laughlin, Metal. Mat. Trans. 32A, 239 (2001).

    Google Scholar 

  20. S. Esmaeili, D.J. Lloyd, Scripta Mater. 50, 155 (2004).

    Google Scholar 

  21. R.K.W. Marceau, R. Ferragut, A. Dupasquier, M.M. Iglesias, S.P. Ringer. Mater. Sci. Forum 519–521, 197 (2006).

    Google Scholar 

  22. S.P. Ringer, K. Raviprasad, Mater. Forum 24, 59 (2000).

    Google Scholar 

  23. T. Honma, D.W. Saxey, S.P. Ringer, Mater. Sci. Forum 519–521, 203 (2006).

    Google Scholar 

  24. D.J. Lloyd, in Proc. ICAA-9, Brisbane, Australia, 2004, J.F. Nie, A.J. Morton, B.C. Muddle, Eds. (Institute of Materials Engineering Australasia Ltd, Melbourne), p. 107.

    Google Scholar 

  25. M. Starink, N. Gao, L. Davin, J. Yan, A. Cerezo, Philos. Mag. 85, 1395 (2005).

    Google Scholar 

  26. M.K. Miller, S.S. Brenner, Res. Mech. 10, 161 (1984).

    Google Scholar 

  27. J.T. Buswell, C.A. English, M.G. Hetherington, W.J. Phythian, G.D.W. Smith, G.M. Worral, Effects of Radiations on Materials: 14th International Symposium, ASTM STP 1046, N.H. Packan, R.E. Stoller, A.S. Kumar, Eds., 127 (American Society for Testing and Materials, Philadelphia, 1990).

    Google Scholar 

  28. M.K. Miller, K.F. Russell, J. Nucl. Mater. 371, 145 (2007).

    Google Scholar 

  29. M.K. Miller, K.F. Russell, M.A. Sokolov, R.K. Nanstad, J. Nucl. Mater. 361, 248 (2007).

    Google Scholar 

  30. M.K. Miller, A.A. Chernobaeva, Y.I. Shtrombakh, K.F. Russell, R.K. Nanstad, D.Y. Erak, O.O. Zabusov, J. Nucl. Mater. 385, 615 (2009).

    Google Scholar 

  31. C.K. Sudbrack, K.E. Yoon, R.D. Noebe, D.N. Seidman, Acta Mater. 54, 3199 (2006).

    Google Scholar 

  32. R.A. Karnesky, C.K. Sudbrack, D.N. Seidman, Scripta Mater. 57, 353 (2007).

    Google Scholar 

  33. Z. Mao, C.K. Sudbrack, K.E. Yoon, G. Martin, D.N. Seidman, Nat. Mater. 6, 210 (2007).

    Google Scholar 

  34. C.K. Sudbrack, R.D. Noebe, D.N. Seidman, Acta Mater. 55, 119 (2007).

    Google Scholar 

  35. C.K. Sudbrack, R.D. Noebe, D.N. Seidman, in Solid-Solid Phase Transformations in Inorganic Materials 2005, J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, W.A. Soffa, Eds. (TMS, 2005), vol. 2, p. 543.

    Google Scholar 

  36. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, D.N. Seidman, Mater. Res. Soc. Symp. Proc. 578, 395 (2000).

    Google Scholar 

  37. P. Lejcek, Surf. Interface Anal. 30, 312 (2000).

    Google Scholar 

  38. B.W. Krakauer, D.N. Seidman, Phys. Rev. B 49, 6724 (1993).

    Google Scholar 

  39. D.A. Shaskov, M.F. Chisholm, D.N. Seidman, Acta Mater. 47, 3939 (1999).

    Google Scholar 

  40. A.R. Waugh, S.M. Payne, G.M. Worrall, G.D.W. Smith, J. Phys. 45-C9, 207 (1984).

  41. D.J. Larson, D.T. Foord, A.K. Petford-Long, T.C. Anthony, I.M. Rozdilsky, A. Cerezo, G.W.D. Smith, Ultramicroscopy 79, 287 (1999).

    Google Scholar 

  42. M.K. Miller, K.F. Russell, G.B. Thompson, Ultramicroscopy 102, 287 (2005).

    Google Scholar 

  43. L. Letellier, A. Bostel, D. Blavette, Scripta Metall. Mater. 30, 1503 (1994).

    Google Scholar 

  44. M. Thuvander, M.K. Miller, K. Stiller, Mater. Sci. Eng. A 270, 38 (1999).

    Google Scholar 

  45. M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, A.J. Bryhan, Scripta Mater. 46, 299 (2002).

    Google Scholar 

  46. M. Abraham, M. Thuvander, M.H. Lane, A. Cerezo, G.D.W. Smith, in Nanophase and Nanocomposite MaterialsIII, S. Komarneni, J.C. Parker, H. Hahn, Eds. (Materials Research Society Symposium Proc., 2000) 581, 517.

    Google Scholar 

  47. P. Choi, M. da Silva, U. Klement, U. Klement, T. Al-Kassab, R. Kirchheim, Acta Mater. 53, 4473 (2005).

    Google Scholar 

  48. K. Seto, D.J. Larson, P.J. Warren, G.D.W. Smith, Scripta Mater. 40, 1029 (1999).

    Google Scholar 

  49. N. Maruyama, G.D.W. Smith, A. Cerezo, Mater. Sci. Eng. A 353, 126 (2003).

    Google Scholar 

  50. N. Maruyama, G.D.W. Smith, Mater. Sci. Forum 467– 470, 949 (2004).

    Google Scholar 

  51. K. Stiller, J. Phys. C8 (Supp. 50), 329 (1989).

  52. D. Lemarchand, E. Cadel, S. Chambreland, D. Blavette, Philos. Mag. A 82, 1651 (2002).

    Google Scholar 

  53. D.J. Larson, M.K. Miller, Mater. Sci. Eng. A 250, 65 (1998).

    Google Scholar 

  54. C. Zhu, X.Y. Xiong, A. Cerezo, R. Hardwicke, G. Krauss, G.D.W. Smith, Ultramicroscopy 107, 808 (2007).

    Google Scholar 

  55. D.N. Seidman, Ann. Rev. Mater. Sci. 32, 235 (2002).

    Google Scholar 

  56. D. Hudson, G.D.W. Smith, Scripta Mater. (2009), in press.

    Google Scholar 

  57. E.A. Marquis, D.N. Seidman, Acta Mater. 49, 1909 (2001).

    Google Scholar 

  58. E.A. Marquis, D.N. Seidman, M. Asta, C.M. Woodward, V. Ozolins, Phys. Rev. Lett. 91, 36101 (2003).

    Google Scholar 

  59. E.A. Marquis, D.N. Seidman, M. Asta, C. Woodward, Acta Mater. 54, 119 (2006).

    Google Scholar 

  60. C.B. Fuller, D.N. Seidman, Acta Mater. 53, 5415 (2005).

    Google Scholar 

  61. M.E. Van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 56, 4369 (2008).

    Google Scholar 

  62. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. London A 62, 49 (1949).

    Google Scholar 

  63. L. Chang, S.J. Barnard, G.D.W. Smith, in Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products (Speich Symposium), G. Krauss, P.E. Repas, Eds. (Iron and Steel Society, Warrendale, PA, 1992), p. 19.

    Google Scholar 

  64. R. Jayaram, M.K. Miller, Scripta Metall. Mater. 33, 19 (1995).

    Google Scholar 

  65. D. Blavette, E. Cadel, A. Fraczkiewicz, A. Menand, Science 286, 2317 (1999).

    Google Scholar 

  66. M.A. Crimp, K. Vedula, Mater. Sci. Eng. 78, 193 (1986).

    Google Scholar 

  67. R. Besson, A. Legris, J. Morillo, Phys. Rev. B 74, 094103 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquis, E.A., Miller, M.K., Blavette, D. et al. Structural Materials: Understanding Atomic-Scale Microstructures. MRS Bulletin 34, 725–731 (2009). https://doi.org/10.1557/mrs2009.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.246

Navigation