Skip to main content

Advertisement

Log in

Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Piezoelectric microelectromechanical systems (MEMS) offer the opportunity for high-sensitivity sensors and large displacement, low-voltage actuators. In particular, recent advances in the deposition of perovskite thin films point to a generation of MEMS devices capable of large displacements at complementary metal oxide semiconductor-compatible voltage levels. Moreover, if the devices are mounted in mechanically noisy environments, they also can be used for energy harvesting. Key to all of these applications is the ability to obtain high piezoelectric coefficients and retain these coefficients throughout the microfabrication process. This article will review the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT). Superior piezoelectric coefficients (e31, f of −18 C/m2) are achieved in {001}-oriented PbZr0.52Ti0.48O3 films with improved compositional homogeneity on Si substrates. The advent of such high piezoelectric responses in films opens up a wide variety of possible applications. A few examples of these, including low-voltage radio frequency MEMS switches and resonators, actuators for millimeter-scale robotics, droplet ejectors, energy scavengers for unattended sensors, and medical imaging transducers, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Trolier-McKinstry, P. Muralt, J. Electroceram. 12, 7 (2004).

    Google Scholar 

  2. P. Muralt, J. Am. Ceram. Soc. 91, 1385 (2008).

    Google Scholar 

  3. S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q. Ul Wahab, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, K. Persson, Mater. Sci. Eng. R 56, 1 (2007).

    Google Scholar 

  4. A.J. Moulson, J.M. Herbert, Electroceramics (Chapman & Hall, London, 1990).

    Google Scholar 

  5. A. Seifert, L. Sagalowicz, P. Muralt, N. Setter, J. Mater. Res. 14, 2012 (1999).

    Google Scholar 

  6. X.-H. Du, J. Zheng, U. Belegundu, K. Uchino, Appl. Phys. Lett. 72, 2421 (1998).

    Google Scholar 

  7. J.H. Park, F. Xu, S. Trolier-McKinstry, J. Appl. Phys. 89, 568 (2001).

    Google Scholar 

  8. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sens. Actuators A 105, 162 (2003).

    Google Scholar 

  9. K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, Jpn. J. Appl. Phys. 34, 192 (1995).

    Google Scholar 

  10. P. Muralt, T. Maeder, L. Sagalowicz, S. Hiboux, S. Scalese, D. Naumovic, R.G. Agostino, N. Xanthopoulos, H.J. Mathieu, L. Patthey, E.L. Bullock, J. Appl. Phys. 83, 3835 (1998).

    Google Scholar 

  11. S. Hiboux, P. Muralt, N. Setter, MRS Symp. Proc. 596, 499 (2000).

    Google Scholar 

  12. C.H. Peng, S.B. Desu, J. Am. Ceram. Soc. 77, 1486 (1994).

    Google Scholar 

  13. C.M. Parish, G.L. Brennecka, B.A. Tuttle, L.N. Brewer, J. Mater. Res. 23, 2944 (2008).

    Google Scholar 

  14. A. Etin, G.E. Shter, S. Baltianski, G.S. Grader, G.M. Reisner, J. Am. Ceram. Soc. 89, 2387 (2006).

    Google Scholar 

  15. F. Calame, P. Muralt, Appl. Phys. Lett. 90, 062907 (2007).

    Google Scholar 

  16. G. Rebeiz, RF MEMS Theory, Design, and Technology (Wiley, New York, 2003).

    Google Scholar 

  17. M.D. Losego, L.H. Jimison, J.P. Maria, Appl. Phys. Lett. 86, 172906 (2005).

    Google Scholar 

  18. S. Srinivasan, J. Hiller, B. Kabious, O. Auciello, Appl. Phys. Lett. 90, 124101 (2007).

    Google Scholar 

  19. F. Calame, P. Muralt, J. Electroceram. 19, 399 (2007).

    Google Scholar 

  20. S.S.N. Bharadwaja, M. Olszta, E.C. Dickey, S. Trolier-McKinstry, X. Li, T. Mayer, F. Roozeboom, J. Am. Ceram. Soc. 89, 2695 (2006).

    Google Scholar 

  21. I.G. Mina, H. Kim, I. Kim, S.K. Park, K. Choi, T.N. Jackson, R.L. Tutwiler, S. Trolier-McKinstry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2422 (2007).

    Google Scholar 

  22. K.R. Udayakumar, T.S. Moise, S.R. Summerfelt, K. Boku, K.A. Remack, J. Gertas, A. Haider, Y. Obeng, J.S. Martin, J. Rodriguez, G. Shinn, A. McKerrow, J. Eliason, R. Bailey, G.R. Fox, Jpn. J. Appl. Phys., Part 1 46, 2180 (2007).

  23. P. Muralt, Integr. Ferroelectr. 17, 297 (1997).

    Google Scholar 

  24. C.M. Hanson, H.R. Beratan, Proc. SPIE Int. Soc. Opt. Eng. 91 (2002).

  25. T. Morita, T. Kanda, Y. Yamagata, M. Kurosawa, T. Higuchi, Jpn. J. Appl. Phys., Part 1 36, 2998 (1997).

  26. T. Kanda, M.K. Kurosawa, H. Yasui, T. Higuchi, Sens. Actuators A 89, 16 (2001).

    Google Scholar 

  27. C.F. Tan, X.Y. Chen, Y.F. Lu, Y.H. Wu, B.J. Cho, J.N. Zeng, J. Laser App. 16, 40 (2004).

    Google Scholar 

  28. A.C. Greenwald, A.R. Kirkpatrick, R.G. Little, J.A. Minnuci, J. Appl. Phys. 50, 783 (1979).

    Google Scholar 

  29. M. von Allmen, Laser-Solid Interactions and Laser Processing (A. Inst. Phys., New York, 1979).

    Google Scholar 

  30. P. Baeri, S.U. Campisano, G. Foti, E. Rimini, J. Appl. Phys. 50, 788 (1979).

    Google Scholar 

  31. K.H. Hwang, Y.J. Song, S.G. Kim, Jpn. J. Appl. Phys., Part 1 37, 7074 (1999).

  32. N. Ledermann, P. Muralt, J. Baborowski, M. Forster, J.-P. Pellaux, J. Micromech. Microeng. 14, 1650 (2004).

    Google Scholar 

  33. L.-P. Wang, R.A. Wolf, W. Yu, K.K. Deng, L. Zou, R.J. Davis, S. Trolier-McKinstry, J. MEMS 12, 433 (2003).

    Google Scholar 

  34. C. Lee, T. Itoh, T. Suga, Sens. Actuators A 72, 179 (1999).

    Google Scholar 

  35. Y. Miyahara, M. Deschler, T. Fujii, S. Watanabe, H. Bleuler, Appl. Surf. Sci. 188, 450 (2002).

    Google Scholar 

  36. Y. Meyer, C. Verdot, M. Collet, J. Baborowski, P. Muralt, Smart Mater. Struct. 16, 128 (2007).

    Google Scholar 

  37. T. Kobayashi, S. Oyama, M. Takahashi, R. Maeda, T. Itoh, Jpn. J. Appl. Phys. 47, 7533 (2008).

    Google Scholar 

  38. E.-H. Yang, Y. Hishinuma, J.-G. Cheng, S. Trolier-McKinstry, E. Bloemhof, B.M. Levine, J. MEMS 15, 1214 (2006).

    Google Scholar 

  39. I. Kanno, T. Kumisawa, T. Suzuki, H. Kotera, IEEE J. Sel. Top. Quantum Electron. 13, 155 (2007).

    Google Scholar 

  40. T. Kohayashi, R. Maeda, Jpn. J. Appl. Phys., Part 1 46, 2781 (2007).

  41. J. Akedo, M. Lebedev, H. Sato, J. Park, Jpn. J. Appl. Phys., Part 1 44, 7072 (2005).

  42. J.G. Smits, K. Fujimoto, V.F. Kleptsyn, J. Micromech. Microeng. 15, 1285 (2005).

    Google Scholar 

  43. Y. Nemirovsky, A. Nemirovsky, P. Muralt, N. Setter, Sens. Actuators A 56, 239 (1996).

    Google Scholar 

  44. P. Muralt, N. Ledermann, J. Baborowski, A. Barzegar, S. Gentil, B. Belgacem, S. Petitgrand, A. Bosseboeuf, N. Setter, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2276 (2005).

    Google Scholar 

  45. P. Muralt, A. Kholkin, M. Kohli, T. Maeder, Sens. Actuators A 53, 397 (1996).

    Google Scholar 

  46. E. Fujii, R. Takayama, K. Nomura, A. Murata, T. Hirasawa, A. Tomozawa, S. Fujii, T. Kamada, H. Torii, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2431 (2007).

    Google Scholar 

  47. E. Hong, S. Troiler-McKinstry, R.L. Smith, S.V. Krishnaswamy, C.B. Freidhoff, J. MEMS 15, 832 (2006).

    Google Scholar 

  48. G. Percin, T.S. Lundgren, B.T. Khuri-Yakub, Appl. Phys. Lett. 73, 2375 (1998).

    Google Scholar 

  49. G. Percin, B.T. Khuri-Yakub, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 573 (2002).

    Google Scholar 

  50. K. Oldham, J. Pulskamp, R.G. Polcawich, P. Ranade, M. Dubey, Integ. Ferroelectr. 95, 54 (2007).

    Google Scholar 

  51. K. Oldham, J.S. Pulskamp, R.G. Polcawich, M. Dubey, J. MEMS 17, 890 (2008).

    Google Scholar 

  52. J. Bronson, J.S. Pulskamp, R.G. Polcawich, C. Kronigner, E. Wetzel., Proc. IEEE MEMS 1047 (2009).

  53. R. Ruby, P. Bradley, J.D. Larson, Y. Oshmyansky, Electron. Lett. 35, 794 (1999).

    Google Scholar 

  54. K.M. Lakin, G.R. Kline, K.T. McCarron, IEEE Trans. Microwave Theory Tech. 43, 2933 (1995).

    Google Scholar 

  55. G. Piazza, P. Stephanou, A. Pisano, J. Microelectromech. Syst. 15, 1406 (2006).

    Google Scholar 

  56. J. Conde, P. Muralt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1373 (2008).

    Google Scholar 

  57. R.A. Wolf, S. Trolier-McKinstry, J. Appl. Phys. 95, 1397 (2004).

    Google Scholar 

  58. N. Bassiri Gharb, I. Fujii, E. Hong, S. Trolier-McKinstry, D.V. Taylor, D. Damjanovic, J. Electroceram. 19, 47 (2007).

    Google Scholar 

  59. H. Chandrahalim, S.A. Bhave, R. Polcawich, J. Pulskamp, D. Judy, R. Kaul, M Dubey, Proceedings of 2008 Solid State Sensor— Actuator and Microsystems Workshop, Hilton Head Island, SC, 2008, pp. 360–363.

    Google Scholar 

  60. R.G. Polcawich, J.S. Pulskamp, D. Judy, P. Ranade, S. Trolier-McKinstry, M. Dubey, IEEE Trans. Microwave Theory Tech. 55, 2642 (2007).

    Google Scholar 

  61. J.S. Pulskamp, D.C. Judy, R.G. Polcawich, R. Kaul, H. Chandrahalim, S.A. Bhave, Proc. IEEE MEMS 900 (2009).

  62. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008).

    Google Scholar 

  63. S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 1131 (2003).

    Google Scholar 

  64. P.D. Mitcheson, E.K. Reilly, T. Toh, P.K. Wright, E.M. Yeatman, J. Micromech. Microeng. 17, S211 (2007).

    Google Scholar 

  65. R. Torah, P. Glynne-Jones, M. Tudor, T. O Donnell, S. Roy, S. Beeby, Meas. Sci. Technol. 19, 125202 (2008).

    Google Scholar 

  66. Y.B. Jeon, R. Sood, J.H. Jeong, S.-G. Kim, Sens. Actuators A 122, 16 (2005).

    Google Scholar 

  67. W.J. Choi, Y. Jeon, J.-H. Jeong, R. Sood, S.G. Kim, J. Electroceram. 17, 543 (2006).

    Google Scholar 

  68. M. Marzencki, S. Basrour, B. Belgacem, P. Muralt, M. Colin, Proc. Nanotechnol. Santa Clara 21 (2007).

  69. N.E. Dutoit, B.L. Wardle, Integr. Ferroelectr. 83, 13 (2006).

    Google Scholar 

  70. M. Lukacs, M. Sayer, S. Foster, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 148 (2000).

    Google Scholar 

  71. F.C. Duval, R.A. Dorey, R.W. Wright, Z. Huang, R.W. Whatmore, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1255 (2004).

  72. P. Marechal, F. Levassort, J. Holc, L.P. Tran-huu-hue, M. Kosec, M. Lethiecq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1524 (2006).

    Google Scholar 

  73. Q.F. Zhou, J.M. Cannata, R.J. Meyer, D.J. Van Tol, W.J. Hughes, K.K. Shung, S. Trolier-McKinstry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 350 (2005).

    Google Scholar 

  74. Y. Itoh, K. Kushida, K. Sugawara, H. Takeuchi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 316 (1995).

    Google Scholar 

  75. T.R. Shrout, Proc. IEEE Int. Symp. App. Ferroelectr. 3, 23 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralt, P., Polcawich, R.G. & Trolier-McKinstry, S. Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting. MRS Bulletin 34, 658–664 (2009). https://doi.org/10.1557/mrs2009.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.177

Navigation