Skip to main content
Log in

Microfluidic Biomaterials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Biomedical applications—prostheses, tissue engineering, drug delivery, and wound healing—demand increasingly sophisticated characteristics from the materials that come into contact with living systems in the laboratory and the clinic. With the development of microfluidics, there is an opportunity to create active biomaterials based on embedded microfluidic structures. These structures allow for control of the concentrations of soluble chemicals and hydrodynamic stresses within the material and at its interfaces, and thus allow one to tailor the environment experienced by the living tissue. In this article, we review initial efforts to develop these microfluidic biomaterials and present considerations regarding the required characteristics of the materials and of the microfluidic-mediated mass transfer. As specific examples, we present work toward microfluidic control of mass transfer in scaffolds for tissue engineering and in wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Boontheekul, H.J. Kong, and D.J. Mooney, Biomaterials 26 (2005) p. 2455.

    Google Scholar 

  2. J.A. Burdick and K.S. Anseth, Biomaterials 23 (2002) p. 4315.

    Google Scholar 

  3. B.D. Ratner and S.J. Bryant, Annu. Rev. Biomed. Eng. 6 (2004) p. 41.

    Google Scholar 

  4. D.J. Beebe, J.S. Moore, Q. Yu, R.H. Liu, M.L. Kraft, B.H. Jo, and C. Devadoss, Proc. Natl. Acad. Science USA 97 (2000) p. 13488.

    Google Scholar 

  5. V.L. Tsang and S.N. Bhatia, Adv. Drug Deliv. Rev. 56 (2004) p. 1635.

    Google Scholar 

  6. J.C. McDonald, M.L. Chabinyc, S.J. Metallo, J.R. Anderson, A.D. Stroock, and G.M. Whitesides, Anal. Chem. 74 (2002) p. 1537.

    Google Scholar 

  7. G.D. Pins, M. Toner, and J.R. Morgan, FASEB J. 14 (2000) p. 593.

    Google Scholar 

  8. M.D. Tang, A.P. Golden, and J. Tien, J. Am. Chem. Soc. 125 (2003) p. 12988.

    Google Scholar 

  9. M. Mayer, J. Yang, I. Gitlin, D.H. Gracias, and G.M. Whitesides, Proteomics 4 (2004) p. 2366.

    Google Scholar 

  10. K.R. King, C.C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti, and J.T. Borenstein, Adv. Mater. 16 (2004) p. 2007.

    Google Scholar 

  11. D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Adv. Mater. 17 (2005) p. 395.

    Google Scholar 

  12. M. LaBarbera, Science 249 (1990) p. 992.

    Google Scholar 

  13. R.L. Fournier, Basic Transport Phenomena in Biomedical Engineering (Edwards Brothers, Lillington, N.C., 1998).

    Google Scholar 

  14. P. Weisz, Science 179 (1973) p. 433.

    Google Scholar 

  15. C.K. Colton, Cell Transplantation 4 (1995) p. 415.

    Google Scholar 

  16. M. Cabodi, N.W. Choi, J.P. Gleghorn, C.S.D. Lee, L.J. Bonassar, and A.D. Stroock, J. Am. Chem. Soc. 127 (2005) p. 13788.

    Google Scholar 

  17. R. Langer and J. Vacanti, Eds., Principles of Tissue Engineering (Academic Press, San Diego, 2000).

  18. I. Martin, D. Wendt, and M. Heberer, Trends Biotechnol. 22 (2004) p. 80.

    Google Scholar 

  19. J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, and J.P. Vacanti, Biomed. Microdevices 4 (2002) p. 167.

    Google Scholar 

  20. C. Fidkowski, M.R. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, and Y.D. Wang, Tissue Eng. 11 (2005) p. 302.

    Google Scholar 

  21. S.C.N. Chang, J.A. Rowley, G. Tobias, N.G. Genes, A.K. Roy, D.J. Mooney, C.A. Vacanti, and L.J. Bonassar, J. Biomed. Mater. Res. 55 (2001) p. 503.

    Google Scholar 

  22. J.A. Rowley, G. Madlambayan, and D.J. Mooney, Biomaterials 20 (1999) p. 45.

    Google Scholar 

  23. K.V. Lambert, P. Hayes, and M. McCarthy, Eur. J. Vasc. Endovasc. Surg. 29 (2005) p. 219.

    Google Scholar 

  24. M.J. Morykwas and L.C. Argenta, FASEB J. 7 (1993) p. A138.

    Google Scholar 

  25. V. Saxena, C.W. Hwang, S. Huang, Q. Eichbaum, D. Ingber, and D.P. Orgill, Plastic Reconstruct. Surg. 114 (2004) p. 1086.

    Google Scholar 

  26. M. Cabodi, K.L. Havenstrite, V. Curtis, S. Suzanne, and A.D. Stroock, “A Microfluidic Wound Dressing and Wound Analysis Tool,” presented at the ASME Summer Bioengineering Conf. (Vail, Co., June 22–26, 2005).

  27. Q. Liu, E.L. Hedberg, Z. Liu, R. Bahulekar, R.K. Meszlenyi, and A.G. Mikos, Biomaterials 21 (2000) p. 2163.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroock, A.D., Cabodi, M. Microfluidic Biomaterials. MRS Bulletin 31, 114–119 (2006). https://doi.org/10.1557/mrs2006.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.25

Keywords

Navigation